1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
//! # `frozenset`
//!
//! *`frozenset()` for Rust*
//!
//! ## What is `frozenset`?
//!
//! `frozenset` is a library crate for Rust that provides the `FrozenMap` and
//! `FrozenSet` types, which are wrappers around `HashMap` and `HashSet`. These
//! types implement `Hash`, and are therefore suitable for use as keys in other
//! `HashMap`s and `HashSet`s.
//!
//! ## Why would I want to use `frozenset`?
//!
//! `frozenset` is useful when you want to use a `HashMap` or `HashSet` as a key
//! in another `HashMap` or `HashSet`. This is not possible with the standard
//! library types, because they do not implement `Hash`.
//!
//! Frozen sets have already been shown to be useful in other languages - in
//! Python, `frozenset()` is considered so useful that it is a built-in,
//! globally-accessible type.
//!
//! ## How do I use `frozenset`?
//!
//! Easy! Just add `frozenset` to your `Cargo.toml`:
//! ```toml
//! [dependencies]
//! frozenset = "0.1"
//! ```
//! Ensure that `frozenset::Freeze` is in scope, and call `.freeze()` on your
//! `HashMap` or `HashSet`:
//! ```rust
//! use std::collections::HashMap;
//!
//! use frozenset::Freeze;
//!
//! let map: HashMap<i32, i32> = [(1, 2), (3, 4)].into();
//! let frozen_map = map.freeze();
//! // Now you can use `frozen_map` as a key in another `HashMap` or `HashSet`!
//! let mut map_of_maps = HashMap::new();
//! map_of_maps.insert(frozen_map, 7i32);
//! ```
//!
//! ## Why is `frozenset` only 0.2.2?
//!
//! `frozenset` is currently in a pre-release state. It is not yet considered
//! stable, and I may add/change any functionality I do not yet consider
//! complete.
use std::borrow::Borrow;
use std::collections::hash_map::{DefaultHasher, RandomState};
use std::collections::{hash_map, hash_set, HashMap, HashSet};
use std::hash::{BuildHasher, Hash, Hasher};
use std::ops::{Deref, Index};
use std::panic::UnwindSafe;

/// The `Freeze` trait is a helper trait to make freezing maps and sets more
/// natural.
pub trait Freeze {
    type Frozen;

    /// Freeze this object.
    fn freeze(self) -> Self::Frozen;
}

impl<K, V, S> Freeze for HashMap<K, V, S> {
    type Frozen = FrozenMap<K, V, S>;

    fn freeze(self) -> Self::Frozen {
        FrozenMap {
            map: self,
        }
    }
}
impl<T, S> Freeze for HashSet<T, S> {
    type Frozen = FrozenSet<T, S>;

    fn freeze(self) -> Self::Frozen {
        FrozenSet {
            set: self,
        }
    }
}

/// A `FrozenMap` is a wrapper around a [`HashMap`] that implements [`Hash`].
///
/// It is a logic error to mutate any element of the map (via internal
/// mutability) after it has been frozen.
///
/// For convenience, `FrozenMap` implements all of [`HashMap`]'s traits, and
/// will [`Deref`] to [`HashMap`], so you can use it as a drop-in replacement
/// for an `&HashMap`.
#[derive(Debug, Clone)]
pub struct FrozenMap<K, V, S = RandomState> {
    map: HashMap<K, V, S>,
}
impl<K, V> FrozenMap<K, V, RandomState> {
    /// Create a new empty `FrozenMap` with the default hasher.
    #[must_use]
    pub fn new() -> Self {
        Self::default()
    }

    /// Un-freeze this `FrozenMap`, returning the underlying [`HashMap`].
    #[must_use]
    pub fn thaw(self) -> HashMap<K, V> {
        self.map
    }
}
impl<K, V, S> Deref for FrozenMap<K, V, S> {
    type Target = HashMap<K, V, S>;

    fn deref(&self) -> &Self::Target {
        &self.map
    }
}
impl<K, V, S: BuildHasher + Default> Default for FrozenMap<K, V, S> {
    fn default() -> Self {
        Self {
            map: HashMap::default(),
        }
    }
}
impl<T, K, V, S> From<T> for FrozenMap<K, V, S>
where
    HashMap<K, V, S>: From<T>,
{
    fn from(map: T) -> Self {
        Self {
            map: map.into(),
        }
    }
}
impl<K: Hash + Eq, V, S: BuildHasher + Default> FromIterator<(K, V)>
    for FrozenMap<K, V, S>
{
    fn from_iter<T>(iter: T) -> Self
    where
        T: IntoIterator<Item = (K, V)>,
    {
        Self {
            map: iter.into_iter().collect(),
        }
    }
}
impl<K: Eq + Hash + Borrow<Q>, Q: Eq + Hash + ?Sized, V, S: BuildHasher> Index<&Q>
    for FrozenMap<K, V, S>
{
    type Output = V;

    fn index(&self, key: &Q) -> &Self::Output {
        &self.map[key]
    }
}
impl<K, V, S> IntoIterator for FrozenMap<K, V, S> {
    type IntoIter = hash_map::IntoIter<K, V>;
    type Item = (K, V);

    fn into_iter(self) -> Self::IntoIter {
        self.map.into_iter()
    }
}
impl<K: Hash + Eq, V: PartialEq, S: BuildHasher> PartialEq for FrozenMap<K, V, S> {
    fn eq(&self, other: &Self) -> bool {
        self.map.eq(&other.map)
    }
}
impl<K: Hash + Eq, V: Eq, S: BuildHasher> Eq for FrozenMap<K, V, S> {
}
impl<K: UnwindSafe, V: UnwindSafe, S: UnwindSafe> UnwindSafe for FrozenMap<K, V, S> {
}
impl<K: Hash, V: Hash, S> Hash for FrozenMap<K, V, S> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        // A fairly simple hash algorithm. Probably not *great* from a
        // collision-avoidance perspective, but it's fast, simple, and
        // consistent.

        // The overall hash is the XOR of the hashes of all the key-value pairs,
        // which will be consistent no matter the iteration order.
        let mut overall_hash = 0;
        for (k, v) in &self.map {
            let mut hasher = DefaultHasher::new();
            k.hash(&mut hasher);
            v.hash(&mut hasher);
            overall_hash ^= hasher.finish();
        }
        overall_hash.hash(state);
    }
}

/// A `FrozenSet` is a wrapper around a [`HashSet`] that implements [`Hash`].
///
/// It is a logic error to mutate any element of the set (via internal
/// mutability) after it has been frozen.
///
/// For convenience, `FrozenSet` implements all of [`HashSet`]'s traits, and
/// will [`Deref`] to [`HashSet`], so you can use it as a drop-in replacement
/// for an `&HashSet`.
#[derive(Debug, Clone)]
pub struct FrozenSet<T, S = RandomState> {
    set: HashSet<T, S>,
}
impl<T> FrozenSet<T> {
    /// Create a new empty `FrozenSet` with the default hasher.
    #[must_use]
    pub fn new() -> Self {
        Self {
            set: HashSet::new(),
        }
    }

    /// Un-freeze this `FrozenSet`, returning the underlying [`HashSet`].
    #[must_use]
    pub fn thaw(self) -> HashSet<T> {
        self.set
    }
}
impl<T, S> Deref for FrozenSet<T, S> {
    type Target = HashSet<T, S>;

    fn deref(&self) -> &Self::Target {
        &self.set
    }
}
impl<T, S: Default> Default for FrozenSet<T, S> {
    fn default() -> Self {
        Self {
            set: HashSet::default(),
        }
    }
}
impl<T, F, S> From<F> for FrozenSet<T, S>
where
    HashSet<T, S>: From<F>,
{
    fn from(set: F) -> Self {
        Self {
            set: set.into(),
        }
    }
}
impl<T: Eq + Hash, S: BuildHasher + Default> FromIterator<T> for FrozenSet<T, S> {
    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
        Self {
            set: iter.into_iter().collect(),
        }
    }
}
impl<T, S> IntoIterator for FrozenSet<T, S> {
    type IntoIter = hash_set::IntoIter<T>;
    type Item = T;

    fn into_iter(self) -> Self::IntoIter {
        self.set.into_iter()
    }
}
impl<T: Hash + Eq, S: BuildHasher> PartialEq for FrozenSet<T, S> {
    fn eq(&self, other: &Self) -> bool {
        self.set.eq(&other.set)
    }
}
impl<T: Hash + Eq, S: BuildHasher> Eq for FrozenSet<T, S> {
}
impl<T: UnwindSafe, S: UnwindSafe> UnwindSafe for FrozenSet<T, S> {
}
impl<T: Hash, S> Hash for FrozenSet<T, S> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        // A fairly simple hash algorithm. Probably not *great* from a
        // collision-avoidance perspective, but it's fast, simple, and
        // consistent.

        // The overall hash is the XOR of the hashes of all the elements, which
        // will be consistent no matter the iteration order.
        let mut overall_hash = 0;
        for v in &self.set {
            let mut hasher = DefaultHasher::new();
            v.hash(&mut hasher);
            overall_hash ^= hasher.finish();
        }
        overall_hash.hash(state);
    }
}

#[cfg(feature = "serde")]
impl<K: serde::Serialize, V: serde::Serialize> serde::Serialize for FrozenMap<K, V> {
    fn serialize<S: serde::Serializer>(
        &self,
        serializer: S,
    ) -> Result<S::Ok, S::Error> {
        self.map.serialize(serializer)
    }
}
#[cfg(feature = "serde")]
impl<'de, K: serde::Deserialize<'de> + Hash + Eq, V: serde::Deserialize<'de>>
    serde::Deserialize<'de> for FrozenMap<K, V>
{
    fn deserialize<D: serde::Deserializer<'de>>(
        deserializer: D,
    ) -> Result<Self, D::Error> {
        Ok(Self {
            map: HashMap::deserialize(deserializer)?,
        })
    }
}
#[cfg(feature = "serde")]
impl<T: serde::Serialize> serde::Serialize for FrozenSet<T> {
    fn serialize<S: serde::Serializer>(
        &self,
        serializer: S,
    ) -> Result<S::Ok, S::Error> {
        self.set.serialize(serializer)
    }
}
#[cfg(feature = "serde")]
impl<'de, T: serde::Deserialize<'de> + Hash + Eq> serde::Deserialize<'de>
    for FrozenSet<T>
{
    fn deserialize<D: serde::Deserializer<'de>>(
        deserializer: D,
    ) -> Result<Self, D::Error> {
        Ok(Self {
            set: HashSet::deserialize(deserializer)?,
        })
    }
}