1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
use std::iter::FromIterator;
use std::sync::Arc;

/// An [`Arc`]-based functional random access list.
///
/// [`Arc`]: https://doc.rust-lang.org/stable/std/sync/struct.Arc.html
#[derive(Hash, Debug, PartialEq, Eq)]
pub struct Fral<T> {
    size: usize,
    pair: Arc<Pair<T>>,
}
impl<T> Fral<T> {
    /// Construct an empty list.
    pub fn new() -> Fral<T> {
        Self::default()
    }
    /// Returns a reference to an element, or `None` if it is out of bounds.
    ///
    /// Time: O(log n)
    ///
    /// # Examples
    ///
    /// ```
    /// # use fral::Fral;
    /// # use std::sync::Arc;
    /// let f: Fral<_> = vec![7, 0, 17].into_iter().rev().collect();
    /// assert_eq!(f.get(2), Some(Arc::new(17)));
    /// ```
    pub fn get(&self, index: usize) -> Option<Arc<T>> {
        self.pair.get(index)
    }
    /// Insert an element at the front of the list.
    ///
    /// Time: O(1)
    pub fn cons<R>(&self, x: R) -> Fral<T>
    where
        R: AsArc<T>,
    {
        Fral {
            size: 1 + self.size,
            pair: Arc::new(self.pair.cons(x.as_arc())),
        }
    }
    /// Get the head and tail of the list.
    ///
    /// Time: O(1)
    pub fn uncons(&self) -> Option<(Arc<T>, Fral<T>)> {
        let size = self.size.wrapping_sub(1);
        self.pair.uncons().map(|(x, pair)| (x, Fral { size, pair }))
    }
    /// Returns true iff the list contains no elements.
    ///
    /// Time: O(1)
    pub fn is_empty(&self) -> bool {
        self.size == 0
    }
    /// Get the number of items in the list.
    ///
    /// Time: O(1)
    pub fn len(&self) -> usize {
        self.size
    }
    pub fn iter(&self) -> Iter<T> {
        Iter { fral: self.clone() }
    }
}
impl<T> Clone for Fral<T> {
    fn clone(&self) -> Fral<T> {
        Fral {
            size: self.size,
            pair: self.pair.clone(),
        }
    }
}
impl<T> Default for Fral<T> {
    fn default() -> Fral<T> {
        Fral {
            size: 0,
            pair: Arc::new(Nil),
        }
    }
}
impl<T> IntoIterator for Fral<T> {
    type Item = Arc<T>;
    type IntoIter = Iter<T>;
    fn into_iter(self) -> Iter<T> {
        Iter { fral: self }
    }
}
/// This is done with repeated `cons`, so you may intend to reverse your iterator first.
///
/// # Examples
///
/// ```
/// # use fral::Fral;
/// # use std::sync::Arc;
/// let items = vec![1, 2, 3];
/// let f: Fral<_> = items.into_iter().collect();
///
/// // the first item in f is the last item of the iterator
/// assert_eq!(f.get(0), Some(Arc::new(3)));
/// ```
impl<T, R: AsArc<T>> FromIterator<R> for Fral<T> {
    fn from_iter<I: IntoIterator<Item = R>>(iter: I) -> Fral<T> {
        let mut f = Fral::new();
        for x in iter {
            f = f.cons(x);
        }
        f
    }
}

use self::Pair::*;
#[derive(Clone, Hash, Debug, PartialOrd, Ord, PartialEq, Eq)]
enum Pair<T> {
    Nil,
    Cons((usize, Arc<Tree<T>>), Arc<Pair<T>>),
}
impl<T> Pair<T> {
    fn get(&self, index: usize) -> Option<Arc<T>> {
        match *self {
            Nil => None,
            Cons((size, ref tree), ref cdr) => {
                if index < size {
                    tree.lookup(size, index)
                } else {
                    cdr.get(index - size)
                }
            }
        }
    }
    fn cons(&self, x: Arc<T>) -> Self {
        match *self {
            Nil => Cons((1, Arc::new(Leaf(x))), Arc::new(Nil)),
            Cons((size1, ref t1), ref nxt) => match **nxt {
                Cons((size2, ref t2), ref rest) => {
                    if size1 == size2 {
                        Cons(
                            (1 + size1 + size2, Arc::new(Node(x, t1.clone(), t2.clone()))),
                            rest.clone(),
                        )
                    } else {
                        Cons(
                            (1, Arc::new(Leaf(x))),
                            Arc::new(Cons(
                                (size1, t1.clone()),
                                Arc::new(Cons((size2, t2.clone()), rest.clone())),
                            )),
                        )
                    }
                }
                Nil => Cons(
                    (1, Arc::new(Leaf(x))),
                    Arc::new(Cons((size1, t1.clone()), Arc::new(Nil))),
                ),
            },
        }
    }
    fn uncons(&self) -> Option<(Arc<T>, Arc<Self>)> {
        match *self {
            Nil => None,
            Cons((size, ref t), ref rest) => match **t {
                Leaf(ref x) => Some((x.clone(), rest.clone())),
                Node(ref x, ref t1, ref t2) => {
                    let half = size / 2;
                    Some((
                        x.clone(),
                        Arc::new(Cons(
                            (half, t1.clone()),
                            Arc::new(Cons((half, t2.clone()), rest.clone())),
                        )),
                    ))
                }
            },
        }
    }
}

use self::Tree::*;
#[derive(Clone, Hash, Debug, PartialOrd, Ord, PartialEq, Eq)]
enum Tree<T> {
    Leaf(Arc<T>),
    Node(Arc<T>, Arc<Tree<T>>, Arc<Tree<T>>),
}
impl<T> Tree<T> {
    fn lookup(&self, size: usize, index: usize) -> Option<Arc<T>> {
        match (index, self) {
            (0, &Leaf(ref x)) | (0, &Node(ref x, _, _)) => Some(x.clone()),
            (_, &Leaf(_)) => None,
            (i, &Node(_, ref t1, ref t2)) => {
                let half = size / 2;
                if i <= half {
                    t1.lookup(half, i - 1)
                } else {
                    t2.lookup(half, i - 1 - half)
                }
            }
        }
    }
}

pub struct Iter<T> {
    fral: Fral<T>,
}
impl<T> Iterator for Iter<T> {
    type Item = Arc<T>;
    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        if let Some((item, fral)) = self.fral.uncons() {
            self.fral = fral;
            Some(item)
        } else {
            None
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.fral.len();
        (len, Some(len))
    }

    #[inline]
    fn count(self) -> usize {
        self.len()
    }

    #[inline]
    fn last(self) -> Option<Self::Item> {
        let len = self.fral.len();
        self.fral.get(len - 1)
    }
}
impl<T> ExactSizeIterator for Iter<T> {}

/// Automatic [`Arc`] wrapping.
///
/// [`Arc`]: https://doc.rust-lang.org/stable/std/sync/struct.Arc.html
pub trait AsArc<T> {
    fn as_arc(self) -> Arc<T>;
}

impl<T> AsArc<T> for T {
    fn as_arc(self) -> Arc<T> {
        Arc::from(self)
    }
}

impl<T> AsArc<T> for Arc<T> {
    fn as_arc(self) -> Arc<T> {
        self
    }
}

#[cfg(test)]
mod tests {
    use super::Fral;
    use std::sync::Arc;

    #[test]
    fn empty() {
        let f: Fral<u8> = Fral::new();
        assert_eq!(f, Fral::default());
        assert!(f.is_empty());
        assert_eq!(f.len(), 0);
    }
    #[test]
    fn singleton() {
        let f = Fral::new();
        let f = f.cons(42);
        assert_eq!(f.get(0), Some(Arc::new(42)));
        assert_eq!(f.get(1), None);
        if let Some((head, tail)) = f.uncons() {
            assert_eq!(*head, 42);
            assert!(tail.is_empty());
        } else {
            panic!("assertion failed: couldn't uncons");
        }
        assert_eq!(f.iter().collect::<Vec<_>>(), vec![Arc::new(42)]);
    }
    #[test]
    fn many_items() {
        let mut f = Fral::new();
        for item in vec![1, 2, 3, 4, 5] {
            f = f.cons(item);
        }
        assert_eq!(f.get(0), Some(Arc::new(5)));
        assert_eq!(f.get(1), Some(Arc::new(4)));
        assert_eq!(f.get(2), Some(Arc::new(3)));
        assert_eq!(f.get(3), Some(Arc::new(2)));
        assert_eq!(f.get(4), Some(Arc::new(1)));
        assert_eq!(f.get(5), None);
        if let Some((head, tail)) = f.uncons() {
            assert_eq!(*head, 5);
            assert_eq!(tail.len(), 4);
        } else {
            panic!("assertion failed: couldn't uncons");
        }
        assert_eq!(
            f.iter().collect::<Vec<_>>(),
            vec![
                Arc::new(5),
                Arc::new(4),
                Arc::new(3),
                Arc::new(2),
                Arc::new(1),
            ]
        );
    }
}