1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#[macro_export]
macro_rules! pipe {
( $last:expr ) => { $last };
( $head:expr, $($tail:expr), +) => {
compose_two($head, pipe!($($tail),+))
};
}
#[macro_export]
macro_rules! compose {
( $last:expr ) => { $last };
( $head:expr, $($tail:expr), +) => {
compose_two(compose!($($tail),+), $head)
};
}
#[macro_export]
macro_rules! partial_vec {
($func:expr, $second:expr) => {
|v| $func($second, v)
};
}
#[macro_export]
macro_rules! map {
($func:expr) => {
partial_vec!(map, $func)
};
}
#[macro_export]
macro_rules! filter {
($func:expr) => {
partial_vec!(filter, $func)
};
}
#[macro_export]
macro_rules! reduce {
($func:expr) => {
partial_vec!(reduce, $func)
};
}
pub fn compose_two<A, B, C, G, F>(f: F, g: G) -> impl FnOnce(A) -> C
where
F: FnOnce(A) -> B,
G: FnOnce(B) -> C,
{
move |x| g(f(x))
}
pub fn map<T, B>(f: impl FnMut(T) -> B, v: Vec<T>) -> Vec<B> {
v.into_iter().map(f).collect::<Vec<B>>()
}
pub fn filter<'r, T: 'r>(f: impl FnMut(&T) -> bool, v: Vec<T>) -> Vec<T> {
v.into_iter().filter(f).into_iter().collect::<Vec<T>>()
}
pub trait Reduce<T> {
fn reduce<F>(self, f: F) -> Option<T>
where
Self: Sized,
F: FnMut(T, T) -> T;
}
impl<T, I> Reduce<T> for I
where
I: Iterator<Item = T>,
{
#[inline]
fn reduce<F>(mut self, f: F) -> Option<T>
where
Self: Sized,
F: FnMut(T, T) -> T,
{
self.next().map(|first| self.fold(first, f))
}
}
pub fn reduce<'r, T: 'r>(f: impl FnMut(T, T) -> T, v: Vec<T>) -> Option<T> {
v.into_iter().reduce(f)
}
#[test]
fn test_compose() {
let add = |x| x + 2;
let multiply = |x| x * 3;
let divide = |x| x / 2;
let result = (compose!(add, multiply, divide))(10);
assert_eq!(17, result);
println!("Composed FnOnce Result is {}", result);
let result = (pipe!(add, multiply, divide))(10);
assert_eq!(18, result);
println!("Piped FnOnce Result is {}", result);
}
#[test]
fn test_map_reduce_filter() {
let result = (compose!(reduce!(|a, b| a * b), filter!(|x| *x < 6), map!(|x| x * 2)))(vec![1, 2, 3, 4]);
assert_eq!(Some(8), result);
println!("test_map_reduce_filter Result is {:?}", result);
}