pub struct SingletonHandle(/* private fields */);Expand description
A non-cloneable runtime handle.
Implementations§
Source§impl SingletonHandle
impl SingletonHandle
Sourcepub fn spawn<F>(&self, future: F) -> JoinHandle<F::Output>
pub fn spawn<F>(&self, future: F) -> JoinHandle<F::Output>
Spawns a future onto the Tokio runtime.
This spawns the given future onto the runtime’s executor, usually a thread pool. The thread pool is then responsible for polling the future until it completes.
The provided future will start running in the background immediately
when spawn is called, even if you don’t await the returned
JoinHandle.
See module level documentation for more details.
§Examples
use tokio::runtime::Runtime;
// Create the runtime
let rt = Runtime::new().unwrap();
// Get a handle from this runtime
let handle = rt.handle();
// Spawn a future onto the runtime using the handle
handle.spawn(async {
println!("now running on a worker thread");
});Sourcepub fn spawn_blocking<F, R>(&self, func: F) -> JoinHandle<R>
pub fn spawn_blocking<F, R>(&self, func: F) -> JoinHandle<R>
Runs the provided function on an executor dedicated to blocking operations.
§Examples
use tokio::runtime::Runtime;
// Create the runtime
let rt = Runtime::new().unwrap();
// Get a handle from this runtime
let handle = rt.handle();
// Spawn a blocking function onto the runtime using the handle
handle.spawn_blocking(|| {
println!("now running on a worker thread");
});Sourcepub fn block_on<F: Future>(&self, future: F) -> F::Output
pub fn block_on<F: Future>(&self, future: F) -> F::Output
Runs a future to completion on this Handle’s associated Runtime.
This runs the given future on the current thread, blocking until it is complete, and yielding its resolved result. Any tasks or timers which the future spawns internally will be executed on the runtime.
When this is used on a current_thread runtime, only the
Runtime::block_on method can drive the IO and timer drivers, but the
Handle::block_on method cannot drive them. This means that, when using
this method on a current_thread runtime, anything that relies on IO or
timers will not work unless there is another thread currently calling
Runtime::block_on on the same runtime.
§If the runtime has been shut down
If the Handle’s associated Runtime has been shut down (through
Runtime::shutdown_background, Runtime::shutdown_timeout, or by
dropping it) and Handle::block_on is used it might return an error or
panic. Specifically IO resources will return an error and timers will
panic. Runtime independent futures will run as normal.
§Panics
This function panics if the provided future panics, if called within an asynchronous execution context, or if a timer future is executed on a runtime that has been shut down.
§Examples
use tokio::runtime::Runtime;
// Create the runtime
let rt = Runtime::new().unwrap();
// Get a handle from this runtime
let handle = rt.handle();
// Execute the future, blocking the current thread until completion
handle.block_on(async {
println!("hello");
});Or using Handle::current:
use tokio::runtime::Handle;
#[tokio::main]
async fn main () {
let handle = Handle::current();
std::thread::spawn(move || {
// Using Handle::block_on to run async code in the new thread.
handle.block_on(async {
println!("hello");
});
});
}