1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
//! This module contains some methods to modify a grid and
//! compute its next generations.

extern crate rand;

use std::sync::Arc;

use rand::Rng;

use super::vulkano::buffer::BufferUsage;
use super::vulkano::buffer::CpuAccessibleBuffer;
use super::vulkano::command_buffer::AutoCommandBufferBuilder;
use super::vulkano::command_buffer::CommandBuffer;
use super::vulkano::descriptor::descriptor_set::PersistentDescriptorSet;
use super::vulkano::format::ClearValue;
use super::vulkano::format::Format;
use super::vulkano::image::Dimensions;
use super::vulkano::image::StorageImage;
use super::vulkano::pipeline::ComputePipeline;
use super::vulkano::sync::GpuFuture;

use super::vulkan::ngs;
use Grid;

impl Grid {
    /// Randomizes the current `Grid` by setting a random state to
    /// each cell.
    pub fn randomize(&mut self) {
        let mut rng = rand::thread_rng();

        let width = self.get_width();
        let height = self.get_height();
        for y in 0..height {
            for x in 0..width {
                if rng.gen::<bool>() {
                    self.set_cell_state(x, y, 255).unwrap(); // Shouldn't fail
                } else {
                    self.set_cell_state(x, y, 0).unwrap(); // Shouldn't fail
                }
            }
        }
    }

    /// Computes the next generation of the current `Grid` and updates it.
    pub fn next_gen(&mut self) {
        if !self.is_toroidal() {
            self.recenter_pattern(1);
        }

        let cells_in_img = StorageImage::new(
            self.device.clone(),
            Dimensions::Dim2d {
                width: self.width as u32,
                height: self.height as u32,
            },
            Format::R8Unorm,
            Some(self.queue.family()),
        ).expect("failed to create image");

        let cells_out_img = StorageImage::new(
            self.device.clone(),
            Dimensions::Dim2d {
                width: self.width as u32,
                height: self.height as u32,
            },
            Format::R8Unorm,
            Some(self.queue.family()),
        ).expect("failed to create image");

        let shader =
            ngs::Shader::load(self.device.clone()).expect("failed to create shader module");
        let compute_pipeline = Arc::new(
            ComputePipeline::new(self.device.clone(), &shader.main_entry_point(), &())
                .expect("failed to create compute pipeline"),
        );

        let set = Arc::new(
            PersistentDescriptorSet::start(compute_pipeline.clone(), 0)
                .add_image(cells_in_img.clone())
                .unwrap()
                .add_image(cells_out_img.clone())
                .unwrap()
                .add_buffer(self.toroidal.clone())
                .unwrap()
                .add_buffer(self.survival.clone())
                .unwrap()
                .add_buffer(self.birth.clone())
                .unwrap()
                .build()
                .unwrap(),
        );

        let command_buffer =
            AutoCommandBufferBuilder::new(self.device.clone(), self.queue.family())
                .unwrap()
                .copy_buffer_to_image(self.cells.clone(), cells_in_img.clone())
                .unwrap()
                .dispatch(
                    [
                        (self.width as f64 / 8.0).ceil() as u32,
                        (self.height as f64 / 8.0).ceil() as u32,
                        1,
                    ],
                    compute_pipeline.clone(),
                    set.clone(),
                    (),
                ).unwrap()
                .copy_image_to_buffer(cells_out_img.clone(), self.cells.clone())
                .unwrap()
                .build()
                .unwrap();

        let finished = command_buffer.execute(self.queue.clone()).unwrap();
        finished
            .then_signal_fence_and_flush()
            .unwrap()
            .wait(None)
            .unwrap();
    }

    pub fn recenter_pattern(&mut self, border_width: usize) {
        let (min_x, max_x, min_y, max_y) = self.compute_pattern_boundaries();

        if min_x.is_none() || max_x.is_none() || min_y.is_none() || max_y.is_none() {
            return;
        }

        let (min_x, max_x, min_y, max_y) = (
            min_x.unwrap(),
            max_x.unwrap(),
            min_y.unwrap(),
            max_y.unwrap(),
        );

        let pattern_origin = (min_x as i32, min_y as i32);
        let pattern_size = ((max_x - min_x + 1), (max_y - min_y + 1));

        let cells_img = StorageImage::new(
            self.device.clone(),
            Dimensions::Dim2d {
                width: self.width as u32,
                height: self.height as u32,
            },
            Format::R8Unorm,
            Some(self.queue.family()),
        ).expect("failed to create image");

        let centered_img = StorageImage::new(
            self.device.clone(),
            Dimensions::Dim2d {
                width: pattern_size.0 as u32 + 2 * border_width as u32,
                height: pattern_size.1 as u32 + 2 * border_width as u32,
            },
            Format::R8Unorm,
            Some(self.queue.family()),
        ).expect("failed to create image");

        let centered_buff = unsafe {
            CpuAccessibleBuffer::uninitialized_array(
                self.device.clone(),
                (pattern_size.0 + 2 * border_width) * (pattern_size.1 + 2 * border_width),
                BufferUsage::all(),
            ).expect("failed to create buffer")
        };

        let command_buffer =
            AutoCommandBufferBuilder::new(self.device.clone(), self.queue.family())
                .unwrap()
                .clear_color_image(
                    centered_img.clone(),
                    ClearValue::Float([0.0, 0.0, 0.0, 0.0]),
                ).unwrap()
                .build()
                .unwrap();

        let finished = command_buffer.execute(self.queue.clone()).unwrap();
        finished
            .then_signal_fence_and_flush()
            .unwrap()
            .wait(None)
            .unwrap();

        let command_buffer =
            AutoCommandBufferBuilder::new(self.device.clone(), self.queue.family())
                .unwrap()
                .copy_buffer_to_image(self.cells.clone(), cells_img.clone())
                .unwrap()
                .copy_image(
                    cells_img.clone(),
                    [pattern_origin.0, pattern_origin.1, 0],
                    0,
                    0,
                    centered_img.clone(),
                    [border_width as i32, border_width as i32, 0],
                    0,
                    0,
                    [pattern_size.0 as u32, pattern_size.1 as u32, 1],
                    1,
                ).unwrap()
                .copy_image_to_buffer(centered_img.clone(), centered_buff.clone())
                .unwrap()
                .build()
                .unwrap();

        let finished = command_buffer.execute(self.queue.clone()).unwrap();
        finished
            .then_signal_fence_and_flush()
            .unwrap()
            .wait(None)
            .unwrap();

        self.width = pattern_size.0 + 2 * border_width;
        self.height = pattern_size.1 + 2 * border_width;
        self.cells = centered_buff;
    }
}