1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
//! # Compile-Time Compiler That Compiles Forth to Trait Expressions
//!
//! "We all know Rust's trait system is Turing complete, so tell me, why aren't we exploiting
//! this???" - [Nathan Corbyn](https://github.com/doctorn/trait-eval)
//!
//!```
//! #![recursion_limit = "256"]
//! #[macro_use] extern crate fortraith;
//! use fortraith::*;
//!
//! forth!(
//!     : factorial (n -- n) 1 swap fact0 ;
//!     : fact0 (n n -- n) dup 1 = if drop else dup rot * swap pred fact0 then ;
//!     5 factorial
//!     return type Out as top
//! );
//! assert_eq!(Out::eval(), 120);
//!```
//! This crate allows the user to exploit traits as much as wanted. It contains around 10% black
//! trait magic, around 40% of the darkest kind of evil macro magic and around 50% of good quality
//! docs (you are here!). Everything is tested and ready for production (a joke).
//!
//! Although you might not want to really use it in production it serves to show how powerful
//! Rust's trait system and `macro_rules!` really are.
//!
//! If you are new to forth, it is a simple stack-based language. Every operation is done on the
//! stack and grabs and pushes values into it. For example `2 2 +` would push `2` to the top of the
//! stack 2 times, take and add them together and push the result back to the stack (So the stack
//! would have only `4` in it if it was empty before pushing the first `2`). Its simplicity makes
//! it a usual target for recreational implementation.
//!
//! See documentation for traits and the macro to see many examples and learn how to use fortraith,
//! and abuse the Rust's trait system!
//!
//! "Ok, ok, all that's fine, but where is my FizzBuzz implementation?" you might ask. Fear not, as
//! tradition dictates [FizzBuzz is implemented in fortraith as well](trait.iff.html).

#![allow(non_camel_case_types)]
use std::marker::PhantomData;
use trait_eval::*;
pub use trait_eval::Eval;

#[doc(hidden)]
pub struct Empty {}

#[doc(hidden)]
pub struct Node<V, N> {
    _val: PhantomData<V>,
    _next: PhantomData<N>,
}

#[doc(hidden)]
pub struct Stop<N> {
    _next: PhantomData<N>,
}

macro_rules! pub_trait {
    ($($(#[$meta:meta])* $name:ident),*) => {
        $(
            $(#[$meta])*
            pub trait $name {
                type Result;
            }
        )*
    }
}

pub_trait!(
    /// Remove the top element
    /// # Examples
    /// ```
    /// # #[macro_use] extern crate fortraith;
    /// # use fortraith::*;
    /// forth!(
    ///     1 2 drop
    ///     return type Out as top
    /// );
    /// assert_eq!(Out::eval(), 1);
    /// ```
    drop,

    /// Duplicate the top element
    /// # Examples
    /// ```
    /// # #[macro_use] extern crate fortraith;
    /// # use fortraith::*;
    /// forth!(
    ///     2 dup +
    ///     return type Out as top
    /// );
    /// assert_eq!(Out::eval(), 4);
    /// ```
    dup,

    /// Swap two top elements
    /// # Examples
    /// ```
    /// # #[macro_use] extern crate fortraith;
    /// # use fortraith::*;
    /// forth!(
    ///     1 2 swap -
    ///     return type Out as top
    /// );
    /// assert_eq!(Out::eval(), 1);
    /// ```
    swap,

    /// Rotate three top elements
    /// # Examples
    /// Rotates 1 2 3 -> 2 3 1 -> 3 1 2
    /// ```
    /// # #[macro_use] extern crate fortraith;
    /// # use fortraith::*;
    /// forth!(
    ///     1 2 3 rot rot
    ///     return type Out as top
    /// );
    /// assert_eq!(Out::eval(), 2);
    /// ```
    rot,

    /// Get the top element
    /// # Examples
    /// WARNING! This effectively discards the stack, so it should only be used with the `return`
    /// statement
    /// ```
    /// # #[macro_use] extern crate fortraith;
    /// # use fortraith::*;
    /// forth!(
    ///     10
    ///     return type Out1 as top
    ///     1 + top
    ///     return type Out2
    /// );
    /// type Out3 = forth!(9 top return);
    /// assert_eq!(Out1::eval(), 10);
    /// assert_eq!(Out2::eval(), 11);
    /// assert_eq!(Out3::eval(), 9);
    /// ```
    top,

    /// ( if / else / then ) conditional expression
    ///
    /// ifs can be nested and can be used both inside and outside of a function. `else` clause is
    /// optional
    /// # Examples
    /// Return 9 if 10 is less than 1, else return 9
    /// ```
    /// # #[macro_use] extern crate fortraith;
    /// # use fortraith::*;
    /// forth!(
    ///     10 1 < if 5 else 9 then
    ///     return type Out as top
    /// );
    /// assert_eq!(Out::eval(), 9);
    /// ```
    /// FizzBuzz (of course), there are no strings or chars in fortraith so Fizz = true, Buzz =
    /// false and FizzBuzz = 0
    /// ```
    /// # #![recursion_limit="256"]
    /// # #[macro_use] extern crate fortraith;
    /// # use fortraith::*;
    /// forth!(
    ///    : FizzBuzz
    ///    dup 3 % 0 = if
    ///        5 % 0 = if
    ///            0 (FizzBuzz)
    ///        else
    ///            true (Fizz)
    ///        then
    ///    else
    ///        dup 5 % 0 = if
    ///            drop false (Buzz)
    ///        then
    ///    then ;
    ///    1 FizzBuzz return type Out1 as top
    ///    2 FizzBuzz return type Out2 as top
    ///    3 FizzBuzz return type Out3 as top
    ///    4 FizzBuzz return type Out4 as top
    ///    5 FizzBuzz return type Out5 as top
    ///    10 5 + FizzBuzz return type Out15 as top
    /// );
    /// assert_eq!(Out1::eval(), 1);
    /// assert_eq!(Out2::eval(), 2);
    /// assert_eq!(Out3::eval(), true);
    /// assert_eq!(Out4::eval(), 4);
    /// assert_eq!(Out5::eval(), false);
    /// assert_eq!(Out15::eval(), 0);
    /// ```
    iff,

    #[doc(hidden)]
    elsef,

    #[doc(hidden)]
    then,

    /// Apply logical not to the top element
    /// # Examples
    /// ```
    /// # #[macro_use] extern crate fortraith;
    /// # use fortraith::*;
    /// forth!(
    ///     true not
    ///     return type Out as top
    /// );
    /// assert_eq!(Out::eval(), false);
    /// ```
    not,

    /// Decrement the top element
    /// # Examples
    /// ```
    /// # #[macro_use] extern crate fortraith;
    /// # use fortraith::*;
    /// forth!(
    ///     8 pred pred
    ///     return type Out as top
    /// );
    /// assert_eq!(Out::eval(), 6);
    /// ```
    pred, 

    /// Index the fibonacci sequence with the top element
    /// # Examples
    /// ```
    /// # #[macro_use] extern crate fortraith;
    /// # use fortraith::*;
    /// forth!(
    ///     8 fib
    ///     return type Out as top
    /// );
    /// assert_eq!(Out::eval(), 21);
    /// ```
    fib,

    /// Calculate the factorial of the top element
    ///
    /// Yeah you don't have to write the factorial word by yourself, it's builtin thanks to
    /// trait_eval!
    /// # Examples
    /// ```
    /// # #[macro_use] extern crate fortraith;
    /// # use fortraith::*;
    /// forth!(
    ///     4 fact
    ///     return type Out as top
    /// );
    /// assert_eq!(Out::eval(), 24);
    /// ```
    fact, 

    /// ( + ) Add two top elements together
    /// # Examples
    /// ```
    /// # #[macro_use] extern crate fortraith;
    /// # use fortraith::*;
    /// forth!(
    ///     9 3 2 + +
    ///     return type Out as top
    /// );
    /// assert_eq!(Out::eval(), 14);
    /// ```
    plus, 

    /// ( - ) Subtract the top element from the second top element
    /// # Examples
    /// ```
    /// # #[macro_use] extern crate fortraith;
    /// # use fortraith::*;
    /// forth!(
    ///     7 5 -
    ///     return type Out as top
    /// );
    /// assert_eq!(Out::eval(), 2);
    /// ```
    minus,

    /// ( % ) Calculate the rest from dividing the second top element by the top element
    /// # Examples
    /// ```
    /// # #[macro_use] extern crate fortraith;
    /// # use fortraith::*;
    /// forth!(
    ///     7 4 %
    ///     return type Out as top
    /// );
    /// assert_eq!(Out::eval(), 3);
    /// ```
    modulo,

    /// ( * ) Multiply two top elements
    /// # Examples
    /// ```
    /// # #[macro_use] extern crate fortraith;
    /// # use fortraith::*;
    /// forth!(
    ///     7 4 *
    ///     return type Out as top
    /// );
    /// assert_eq!(Out::eval(), 28);
    /// ```
    mult, 

    /// ( = ) Check if two top elements are equal
    /// # Examples
    /// ```
    /// # #[macro_use] extern crate fortraith;
    /// # use fortraith::*;
    /// forth!(
    ///     1 2 + 3 =
    ///     return type Out as top
    /// );
    /// assert_eq!(Out::eval(), true);
    /// ```
    eq,

    /// ( < ) Check if the second top element is less than the top elements
    /// # Examples
    /// ```
    /// # #[macro_use] extern crate fortraith;
    /// # use fortraith::*;
    /// forth!(
    ///     10 3 <
    ///     return type Out as top
    /// );
    /// assert_eq!(Out::eval(), false);
    /// ```
    less,

    /// Logical and two top elements
    /// # Examples
    /// ```
    /// # #[macro_use] extern crate fortraith;
    /// # use fortraith::*;
    /// forth!(
    ///     true false and
    ///     return type Out as top
    /// );
    /// assert_eq!(Out::eval(), false);
    /// ```
    and,

    /// Logical or two top elements
    /// # Examples
    /// ```
    /// # #[macro_use] extern crate fortraith;
    /// # use fortraith::*;
    /// forth!(
    ///     true false or
    ///     return type Out as top
    /// );
    /// assert_eq!(Out::eval(), true);
    /// ```
    or,

    /// ( 0 ) Constant number
    zero,
    /// ( 1 ) Constant number
    one,
    /// ( 2 ) Constant number
    two,
    /// ( 3 ) Constant number
    three,
    /// ( 4 ) Constant number
    four,
    /// ( 5 ) Constant number
    five,
    /// ( 6 ) Constant number
    six,
    /// ( 7 ) Constant number
    seven,
    /// ( 8 ) Constant number
    eight,
    /// ( 9 ) Constant number
    nine,
    /// ( 10 ) Constant number 
    ten,
    /// ( true ) Constant boolean
    truef,
    /// ( false ) Constant boolean
    falsef
);

macro_rules! stack_op {
    (1, $name:ident, $op:ident, $type:ident) => {
        impl<V, N> $name for Node<V, N>
        where
            V: $op + $type,
        {
            type Result = Node<V::Result, N>;
        }
    };
    (2, $name:ident, $op:ident, $type:ident) => {
        impl<V, N> $name for Node<V, N>
        where
            N: drop + top,
            V: $type,
            <N as top>::Result: $type + $op<V>,
        {
            type Result = Node<<<N as top>::Result as $op<V>>::Result, <N as drop>::Result>;
        }
    };
}

stack_op!(1, not, Not, Bool);
stack_op!(1, pred, Pred, Nat);
stack_op!(1, fib, Fib, Nat);
stack_op!(1, fact, Fact, Nat);

stack_op!(2, plus, Plus, Nat);
stack_op!(2, minus, Minus, Nat);
stack_op!(2, modulo, Mod, Nat);
stack_op!(2, mult, Times, Nat);
stack_op!(2, eq, Equals, Nat);
stack_op!(2, less, LessThan, Nat);
stack_op!(2, and, AndAlso, Bool);
stack_op!(2, or, OrElse, Bool);

macro_rules! constant {
    ($name:ident, $con:ty) => {
        impl<V, N> $name for Node<V, N> {
            type Result = Node<$con, Self>;
        }
        impl $name for Empty {
            type Result = Node<$con, Self>;
        }
    };
}

constant!(zero, Zero);
constant!(one, One);
constant!(two, Two);
constant!(three, Three);
constant!(four, Four);
constant!(five, Five);
constant!(six, Six);
constant!(seven, Seven);
constant!(eight, Eight);
constant!(nine, Nine);
constant!(ten, Ten);
constant!(truef, True);
constant!(falsef, False);

impl<V, N> drop for Node<V, N> {
    type Result = N;
}

impl<V, N> dup for Node<V, N> {
    type Result = Node<V, Self>;
}

impl<V, N> swap for Node<V, N>
where
    N: top + drop,
{
    type Result = Node<<N as top>::Result, Node<V, <N as drop>::Result>>;
}

impl<V, N> rot for Node<V, N>
where
    N: top + drop,
    <N as drop>::Result: top + drop,
{
    type Result = Node<
        <<N as drop>::Result as top>::Result,
        Node<V, Node<<N as top>::Result, <<N as drop>::Result as drop>::Result>>,
    >;
}

impl<V, N> top for Node<V, N> {
    type Result = V;
}

impl<N> iff for Node<True, N> {
    type Result = N;
}
impl<N> iff for Node<False, N> {
    type Result = Stop<N>;
}
impl<N> iff for Stop<N> {
    type Result = Stop<Self>;
}

impl<V, N> elsef for Node<V, N> {
    type Result = Stop<Self>;
}
impl<N> elsef for Stop<Stop<N>> {
    type Result = Self;
}
impl<V, N> elsef for Stop<Node<V, N>> {
    type Result = Node<V, N>;
}
impl elsef for Stop<Empty> {
    type Result = Empty;
}

impl<V, N> then for Node<V, N> {
    type Result = Self;
}
impl then for Empty {
    type Result = Self;
}
impl<N> then for Stop<N> {
    type Result = N;
}

macro_rules! impl_for_stop {
    ($($trait:ident),*) => {
        $(
            impl<N> $trait for Stop<N> {
                type Result = Self;
            }
        )*
    };
}

impl_for_stop!(
    top, drop, dup, plus, minus, modulo, mult, eq, less, and, or, zero, one, two, three, four,
    five, six, seven, eight, nine, ten, truef, falsef, swap, rot, not, pred, fact, fib
);

/// Compile forth to trait expressions
///
/// Every trait from this crate serves as a word than can be used in the forth program.
/// Macro substitutes common names (`+ - * % < = if else true false`, numbers from `1` to `10`) for
/// corresponding traits to make it easier. Everything inside parentheses `( )` is treated as comments
/// and ignored by the macro.
///
/// Additionally the macro provides a few special expressions (note that these cannot be used inside
/// a new word definition):
/// - `.` which is equivalent to `drop` but it inserts a `println` statement
/// with the dropped value for convenience. You could call this cheating, but there is no way to
/// print types at compile time known to me.
/// ```
/// # #[macro_use] extern crate fortraith;
/// # use fortraith::*;
/// forth!(
///     10 .
/// );
/// // prints "10"
/// ```
/// - `: $name $($cmds)* ;` which defines a new word (trait) named `$name` that executes commands
/// given after the name
/// ```
/// # #[macro_use] extern crate fortraith;
/// # use fortraith::*;
/// forth!(
///     : booltonum if 0 else 1 then ;
///     true booltonum
///     false booltonum
///     +
///     return type Out as top
/// );
/// assert_eq!(Out::eval(), 1);
/// ```
/// - `return` which can be used in 3 different ways:
///   - `return` at the end of the program returns the current stack (This can only be used if
///   `.`, `:;`, or another `return` are not used in the program)
///   - `return type $name` anywhere inside the program saves the stack to a type alias `$name`
///   - `return type $name as $cmd` anywhere inside the program saves the stack after executing
///   `$cmd` on the stack to type alias `$name`, but without modifying the actual stack in the
///   program.
/// See [top](trait.top.html) for examples
#[macro_export]
macro_rules! forth {
    ({ $EX:ty }) => { };
    ({ $EX:ty } return) => {
        $EX
    };
    ({ $EX:ty } return type $name:ident as $tok:tt $($token:tt)*) => {
        type $name = <$EX as $tok>::Result;
        forth!({ $EX } $($token)*)
    };
    ({ $EX:ty } return type $name:ident $($token:tt)*) => {
        type $name = $EX;
        forth!({ $EX } $($token)*)
    };
    ({ $EX:ty } . $($token:tt)*) => {
        println!("{}", <$EX as top>::Result::eval());
        forth!({ <$EX as drop>::Result } $($token)*)
    };
    ({ $EX:ty } : $name:ident $tok:tt $($token:tt)*) => {
        forth!(@compile { $EX } $name {()} ($tok) $($token)*)
    };
    ({ $EX:ty } $tok:tt $($token:tt)*) => {
        forth!({ <$EX as $tok>::Result } $($token)*)
    };
    (@compile { $EX:ty } $name:ident {$(($($cmdl:tt)*))*} ($($cmdr:tt)*) ; $($tbd:tt)*) => {
        pub trait $name {
            type Result;
        }
        impl<N> $name for Stop<N> {
            type Result = Self;
        }
        impl<V, N> $name for Node<V, N>
        where $(
            forth!({Self} $($cmdl)* return): $cmdr
        ),*
        {
            type Result = forth!({ Self } $($cmdr)* return);
        }
        forth!({ $EX } $($tbd)*)
    };
    (@compile { $EX:ty } $name:ident {$(($($cmdl:tt)*))*} ($($cmdr:tt)*) $new:tt $($tbd:tt)*) => {
        forth!(@compile { $EX } $name {$(($($cmdl)*))* ($($cmdr)*)} ($($cmdr)* $new) $($tbd)*)
    };
    (@subs ($($subst:tt)*) {$EX:ty}) => {
        forth!({$EX} $($subst)*)
    };
    (@subs ($($subst:tt)*) {$EX:ty} ($($comment:tt)*) $($token:tt)*) => {
        forth!(@subs ($($subst)*) {$EX} $($token)*)
    };
    (@subs ($($subst:tt)*) {$EX:ty} + $($token:tt)*) => {
        forth!(@subs ($($subst)* plus) {$EX} $($token)*)
    };
    (@subs ($($subst:tt)*) {$EX:ty} - $($token:tt)*) => {
        forth!(@subs ($($subst)* minus) {$EX} $($token)*)
    };
    (@subs ($($subst:tt)*) {$EX:ty} * $($token:tt)*) => {
        forth!(@subs ($($subst)* mult) {$EX} $($token)*)
    };
    (@subs ($($subst:tt)*) {$EX:ty} % $($token:tt)*) => {
        forth!(@subs ($($subst)* modulo) {$EX} $($token)*)
    };
    (@subs ($($subst:tt)*) {$EX:ty} = $($token:tt)*) => {
        forth!(@subs ($($subst)* eq) {$EX} $($token)*)
    };
    (@subs ($($subst:tt)*) {$EX:ty} < $($token:tt)*) => {
        forth!(@subs ($($subst)* less) {$EX} $($token)*)
    };
    (@subs ($($subst:tt)*) {$EX:ty} if $($token:tt)*) => {
        forth!(@subs ($($subst)* iff) {$EX} $($token)*)
    };
    (@subs ($($subst:tt)*) {$EX:ty} else $($token:tt)*) => {
        forth!(@subs ($($subst)* elsef) {$EX} $($token)*)
    };
    (@subs ($($subst:tt)*) {$EX:ty} 0 $($token:tt)*) => {
        forth!(@subs ($($subst)* zero) {$EX} $($token)*)
    };
    (@subs ($($subst:tt)*) {$EX:ty} 1 $($token:tt)*) => {
        forth!(@subs ($($subst)* one) {$EX} $($token)*)
    };
    (@subs ($($subst:tt)*) {$EX:ty} 2 $($token:tt)*) => {
        forth!(@subs ($($subst)* two) {$EX} $($token)*)
    };
    (@subs ($($subst:tt)*) {$EX:ty} 3 $($token:tt)*) => {
        forth!(@subs ($($subst)* three) {$EX} $($token)*)
    };
    (@subs ($($subst:tt)*) {$EX:ty} 4 $($token:tt)*) => {
        forth!(@subs ($($subst)* four) {$EX} $($token)*)
    };
    (@subs ($($subst:tt)*) {$EX:ty} 5 $($token:tt)*) => {
        forth!(@subs ($($subst)* five) {$EX} $($token)*)
    };
    (@subs ($($subst:tt)*) {$EX:ty} 6 $($token:tt)*) => {
        forth!(@subs ($($subst)* six) {$EX} $($token)*)
    };
    (@subs ($($subst:tt)*) {$EX:ty} 7 $($token:tt)*) => {
        forth!(@subs ($($subst)* seven) {$EX} $($token)*)
    };
    (@subs ($($subst:tt)*) {$EX:ty} 8 $($token:tt)*) => {
        forth!(@subs ($($subst)* eight) {$EX} $($token)*)
    };
    (@subs ($($subst:tt)*) {$EX:ty} 9 $($token:tt)*) => {
        forth!(@subs ($($subst)* nine) {$EX} $($token)*)
    };
    (@subs ($($subst:tt)*) {$EX:ty} 10 $($token:tt)*) => {
        forth!(@subs ($($subst)* ten) {$EX} $($token)*)
    };
    (@subs ($($subst:tt)*) {$EX:ty} true $($token:tt)*) => {
        forth!(@subs ($($subst)* truef) {$EX} $($token)*)
    };
    (@subs ($($subst:tt)*) {$EX:ty} false $($token:tt)*) => {
        forth!(@subs ($($subst)* falsef) {$EX} $($token)*)
    };
    (@subs ($($subst:tt)*) {$EX:ty} $tok:tt $($token:tt)*) => {
        forth!(@subs ($($subst)* $tok) {$EX} $($token)*)
    };
    ($($token:tt)*) => {
        forth!(@subs () { Empty } $($token)*)
    };
}