1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
#[macro_use]
extern crate serde_derive;

extern crate crypto;
extern crate rand;
extern crate secp256k1;
extern crate serde;
extern crate serde_json;

pub mod ed25519;
pub mod secp256k;

#[derive(Debug, Copy, Clone, PartialEq, Serialize, Deserialize)]
#[repr(u8)]
pub enum SignType {
    Ed25519 = 0, //default
    Secp256k1 = 1,
}

impl Default for SignType {
    fn default() -> Self {
        SignType::Ed25519
    }
}

impl SignType {
    pub fn is_valid(n: u8) -> bool {
        if n <= 1 {
            return true;
        }
        false
    }
}

// Note: what about cancel the uniform trait?
// if impl trait sign, if caller use sign or verify, need build a Self object, but sk is no help in verify. pk is no help in sign too.
// and  diff sign algorithms have diff struct(sk, pk, message, signature), use the uniform api will have lots of convert between [u8] and struct,
// and convert have cost.

/// Every sign algo will impl trait Signer
/// get_key_pair: return key pair{sk, pk}
/// get_public_key: get pk from sk
/// sign: use sk to sign message, return sign result
/// verify: detect the signature is signed by pk for message or not.
pub trait Signer {
    fn get_key_pair() -> Self;
    fn get_public_key(sk: &[u8]) -> Vec<u8>;
    fn sign(sk: &[u8], message: &[u8]) -> Vec<u8>;
    fn verify(pk: &[u8], message: &[u8], signature: &[u8]) -> bool;
}

/// return a tuple(sk, pk)
pub fn get_key_pair(sign_type: Option<SignType>) -> (Vec<u8>, Vec<u8>) {
    match sign_type {
        Some(SignType::Ed25519) | None => {
            let pair = ed25519::Ed25519::get_key_pair();
            (pair.sk, pair.pk)
        }
        Some(SignType::Secp256k1) => {
            let pair = secp256k::Secp256k::get_key_pair();
            (pair.sk, pair.pk)
        }
    }
}

pub fn get_pk_by_sk(sk: &[u8], sign_type: &Option<SignType>) -> Vec<u8> {
    match sign_type {
        Some(SignType::Ed25519) | None => ed25519::Ed25519::get_public_key(sk),
        Some(SignType::Secp256k1) => secp256k::Secp256k::get_public_key(sk),
    }
}

pub fn sign(sk: &[u8], message: &[u8], sign_type: Option<SignType>) -> Vec<u8> {
    match sign_type {
        Some(SignType::Ed25519) | None => ed25519::Ed25519::sign(sk, message),
        Some(SignType::Secp256k1) => secp256k::Secp256k::sign(sk, message),
    }
}

pub fn verify(pk: &[u8], message: &[u8], signature: &[u8], sign_type: Option<SignType>) -> bool {
    match sign_type {
        Some(SignType::Ed25519) | None => ed25519::Ed25519::verify(pk, message, signature),
        Some(SignType::Secp256k1) => secp256k::Secp256k::verify(pk, message, signature),
    }
}

#[test]
fn test_signer() {
    let ed25519_key_pair = get_key_pair(Some(SignType::Ed25519));
    let expect_pk = get_pk_by_sk(&ed25519_key_pair.0, &Some(SignType::Ed25519));
    assert_eq!(ed25519_key_pair.1, expect_pk);

    let message = b"hello rust";
    let signature = sign(&ed25519_key_pair.0, message, Some(SignType::Ed25519));
    assert!(verify(
        &ed25519_key_pair.1,
        message,
        &signature,
        Some(SignType::Ed25519)
    ));
}