1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
//! A framework for Rust wrappers over C APIs.
//!
//! Ownership is as important in C as it is in Rust, but the semantics are often implicit. In
//! particular, pointer-to-value is commonly used to pass C values both when transferring ownership
//! or a borrow.
//!
//! This crate provides a framework to define a Rust wrapper over these kinds of raw C APIs in a way
//! that allows ownership semantics to be expressed in an ergonomic manner. The framework takes a
//! dual-type approach similar to APIs in the standard library such as `PathBuf`/`Path` or `String`/
//! `str`. One type represents an owned value and references to the other represent borrowed
//! values.
//!
//! # Examples
//!
//! ```
//! use foreign_types::{ForeignType, ForeignTypeRef, Opaque};
//! use std::ops::{Deref, DerefMut};
//! use std::ptr::NonNull;
//!
//! mod foo_sys {
//!     pub enum FOO {}
//!
//!     extern {
//!         pub fn FOO_free(foo: *mut FOO);
//!     }
//! }
//!
//! // The borrowed type is a newtype wrapper around an `Opaque` value.
//! //
//! // `FooRef` values never exist; we instead create references to `FooRef`s
//! // from raw C pointers.
//! pub struct FooRef(Opaque);
//!
//! impl ForeignTypeRef for FooRef {
//!     type CType = foo_sys::FOO;
//! }
//!
//! // The owned type is simply a newtype wrapper around the raw C type.
//! //
//! // It dereferences to `FooRef`, so methods that do not require ownership
//! // should be defined there.
//! pub struct Foo(NonNull<foo_sys::FOO>);
//!
//! unsafe impl Sync for FooRef {}
//! unsafe impl Send for FooRef {}
//!
//! unsafe impl Sync for Foo {}
//! unsafe impl Send for Foo {}
//!
//! impl Drop for Foo {
//!     fn drop(&mut self) {
//!         unsafe { foo_sys::FOO_free(self.as_ptr()) }
//!     }
//! }
//!
//! impl ForeignType for Foo {
//!     type CType = foo_sys::FOO;
//!     type Ref = FooRef;
//!
//!     unsafe fn from_ptr(ptr: *mut foo_sys::FOO) -> Foo {
//!         Foo(NonNull::new_unchecked(ptr))
//!     }
//!
//!     fn as_ptr(&self) -> *mut foo_sys::FOO {
//!         self.0.as_ptr()
//!     }
//! }
//!
//! impl Deref for Foo {
//!     type Target = FooRef;
//!
//!     fn deref(&self) -> &FooRef {
//!         unsafe { FooRef::from_ptr(self.as_ptr()) }
//!     }
//! }
//!
//! impl DerefMut for Foo {
//!     fn deref_mut(&mut self) -> &mut FooRef {
//!         unsafe { FooRef::from_ptr_mut(self.as_ptr()) }
//!     }
//! }
//!
//! // add in Borrow, BorrowMut, AsRef, AsRefMut, Clone, ToOwned...
//! ```
//!
//! The `foreign_type!` macro can generate this boilerplate for you:
//!
//! ```
//! #[macro_use]
//! extern crate foreign_types;
//!
//! mod foo_sys {
//!     pub enum FOO {}
//!
//!     extern {
//!         pub fn FOO_free(foo: *mut FOO);
//!         pub fn FOO_duplicate(foo: *mut FOO) -> *mut FOO; // optional
//!     }
//! }
//!
//! foreign_type! {
//!     /// A Foo.
//!     pub type Foo
//!         : Sync + Send // optional
//!     {
//!         type CType = foo_sys::FOO;
//!         fn drop = foo_sys::FOO_free;
//!         fn clone = foo_sys::FOO_duplicate; // optional
//!     }
//!
//!     /// A Foo with generic parameters.
//!     pub type GenericFoo<T> {
//!         type CType = foo_sys::FOO;
//!         // This type is added as a `PhantomData` field to handle variance
//!         // of the parameters. However, it has no impact on trait impls:
//!         // `GenericFoo<T>` is always `Clone`, even if `T` is not.
//!         type PhantomData = T;
//!         fn drop = foo_sys::FOO_free;
//!         fn clone = foo_sys::FOO_duplicate;
//!     }
//! }
//!
//! # fn main() {}
//! ```
//!
//! If `fn clone` is specified, then it must take `CType` as an argument and return a copy of it as `CType`.
//! It will be used to implement `Clone`, and if the `std` Cargo feature is enabled, `ToOwned`.
//!
//! Say we then have a separate type in our C API that contains a `FOO`:
//!
//! ```
//! mod foo_sys {
//!     pub enum FOO {}
//!     pub enum BAR {}
//!
//!     extern {
//!         pub fn FOO_free(foo: *mut FOO);
//!         pub fn BAR_free(bar: *mut BAR);
//!         pub fn BAR_get_foo(bar: *mut BAR) -> *mut FOO;
//!     }
//! }
//! ```
//!
//! The documentation for the C library states that `BAR_get_foo` returns a reference into the `BAR`
//! passed to it, which translates into a reference in Rust. It also says that we're allowed to
//! modify the `FOO`, so we'll define a pair of accessor methods, one immutable and one mutable:
//!
//! ```
//! #[macro_use]
//! extern crate foreign_types;
//!
//! use foreign_types::ForeignTypeRef;
//!
//! mod foo_sys {
//!     pub enum FOO {}
//!     pub enum BAR {}
//!
//!     extern {
//!         pub fn FOO_free(foo: *mut FOO);
//!         pub fn BAR_free(bar: *mut BAR);
//!         pub fn BAR_get_foo(bar: *mut BAR) -> *mut FOO;
//!     }
//! }
//!
//! foreign_type! {
//!     /// A Foo.
//!     pub type Foo: Sync + Send {
//!         type CType = foo_sys::FOO;
//!         fn drop = foo_sys::FOO_free;
//!     }
//!
//!     /// A Bar.
//!     pub type Bar: Sync + Send {
//!         type CType = foo_sys::BAR;
//!         fn drop = foo_sys::BAR_free;
//!     }
//! }
//!
//! impl BarRef {
//!     fn foo(&self) -> &FooRef {
//!         unsafe { FooRef::from_ptr(foo_sys::BAR_get_foo(self.as_ptr())) }
//!     }
//!
//!     fn foo_mut(&mut self) -> &mut FooRef {
//!         unsafe { FooRef::from_ptr_mut(foo_sys::BAR_get_foo(self.as_ptr())) }
//!     }
//! }
//!
//! # fn main() {}
//! ```
#![no_std]
#![warn(missing_docs)]
#![doc(html_root_url = "https://docs.rs/foreign-types/0.4")]

#[cfg(feature = "std")]
extern crate std;

#[doc(hidden)]
pub use foreign_types_macros::foreign_type_impl;
#[doc(inline)]
pub use foreign_types_shared::{ForeignType, ForeignTypeRef, Opaque};

#[doc(hidden)]
pub mod export {
    pub use core::borrow::{Borrow, BorrowMut};
    pub use core::clone::Clone;
    pub use core::convert::{AsMut, AsRef};
    pub use core::marker::{PhantomData, Send, Sync};
    pub use core::ops::{Deref, DerefMut, Drop};
    pub use core::ptr::NonNull;

    #[cfg(feature = "std")]
    pub use std::borrow::ToOwned;
}

/// A macro to easily define wrappers for foreign types.
///
/// # Examples
///
/// ```
/// #[macro_use]
/// extern crate foreign_types;
///
/// # mod openssl_sys { pub type SSL = (); pub unsafe fn SSL_free(_: *mut SSL) {} pub unsafe fn SSL_dup(x: *mut SSL) -> *mut SSL {x} }
/// # mod foo_sys { pub type THING = (); pub unsafe fn THING_free(_: *mut THING) {} }
/// foreign_type! {
///     /// Documentation for the owned type.
///     pub type Ssl: Sync + Send {
///         type CType = openssl_sys::SSL;
///         fn drop = openssl_sys::SSL_free;
///         fn clone = openssl_sys::SSL_dup;
///     }
///
///     /// This type immutably borrows other data and has a limited lifetime!
///     pub type Thing<'a>: Send {
///         type CType = foo_sys::THING;
///         type PhantomData = &'a ();
///         fn drop = foo_sys::THING_free;
///     }
/// }
///
/// # fn main() {}
/// ```
#[macro_export(local_inner_macros)]
macro_rules! foreign_type {
    ($($t:tt)*) => {
        $crate::foreign_type_impl!($crate $($t)*);
    };
}