1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
//! Functors and monads in Rust
//!
//! *Note:* This crate has some limitations. Be sure to read the "Caveats"
//! section below.
//!
//! # Functors
//!
//! The following traits are provided to describe functors:
//!
//! * [`Functor`] is a generic trait that provides an [`fmap`] method, which is
//!   a generalization of [`Option::map`], [`Result::map`], and so on, and
//!   which is [implemented] for a variety of types in the standard library.
//! * [`FunctorSelf`] is a special case of `Functor` where types aren't changed
//!   when mapping. It is automatically implemented through a blanket
//!   implementation and it must be added as a bound when mapping a type to
//!   itself.
//! * [`FunctorMut`] is a special case of `FunctorSelf` whose [`fmap_mut`]
//!   method operates on `&mut self`. It is not implemented automatically, but
//!   this crate provides implementations for all types in the standard library
//!   for which `Functor` is implemented.
//!
//! [`fmap`]: Functor::fmap
//! [`fmap_mut`]: FunctorMut::fmap_mut
//! [implemented]: Functor#foreign-impls
//!
//! # Contravariant functors
//!
//! The following traits are provided to describe contravariant functors, e.g.
//! a `Writer<B>` that can be converted to a `Writer<A>` using an `Fn(A) -> B`.
//!
//! * [`Contravariant`] (akin to `Functor`)
//! * [`ContravariantSelf`] (akin to `FunctorSelf`)
//! * [`ContravariantMut`] (akin to `FunctorMut`)
//!
//! # Monads
//!
//! The [`Monad`] trait describes functors which are also monads. Its
//! supertrait [`Pure`] allows wrapping a single value. ([`Pure::pure`] is
//! equivalent to what's usually called "return" in the context of monads).
//! Nested monads implement [`NestedMonad`] through a blanket implementation.
//!
//! # Applicative functors
//!
//! For applicative functors see the [`Applicative`] trait.
//!
//! # Caveats
//!
//! From the trait definitions in this crate, Rust can't always deduce type
//! equality or deduce the implemented traits automatically. This may result in
//! complex (possibly viral) type bounds being required, which may strongly
//! **limit the usability of this crate.** Consider the following examples:
//!
//! ```
//! # use fmap::Functor;
//! fn foo1<'a, T>(functor: T) -> T
//! where
//!     T: Functor<'a, u16, Inner = u8>,
//! {
//!     functor.fmap(|x| x as u16).fmap(|x| x as u8) // works
//! }
//! ```
//!
//! ```compile_fail
//! # use fmap::Functor;
//! fn foo2<'a, T>(functor: T)
//! where
//!     T: Functor<'a, u16, Inner = u8>,
//!     T: Functor<'a, u32, Inner = u16>,
//! {
//!     let _ = functor.fmap(|x| x as u16).fmap(|x| x as u32); // fails
//! }
//! ```
//!
//! ```
//! # use fmap::Functor;
//! fn foo3<'a, T>(functor: T)
//! where
//!     T: Functor<'a, u16, Inner = u8>,
//!     T::Mapped: Functor<'a, u32, Inner = u16>, // this is needed instead
//! {
//!     let _ = functor.fmap(|x| x as u16).fmap(|x| x as u32);
//! }
//! ```
//!
//! Also see [`FunctorSelf`] for a workaround in the most simple cases.

#![warn(missing_docs)]

mod impls;
#[cfg(test)]
mod tests;

/// A [`Functor`] that can be mapped to itself
///
/// This trait should be required as bound when the compiler shall infer that
/// the return type of [`Functor::fmap`] is `Self`.
///
/// # Examples
///
/// ```
/// # use fmap::FunctorSelf;
/// fn double_inner_i32<'a, T>(outer: T) -> T
/// where
///     //T: Functor<'a, i32, Inner = i32>, // doesn't work
///     T: FunctorSelf<'a, i32>, // use this instead
/// {
///     outer.fmap(|x| 2 * x)
///     // NOTE: The following may be more efficient:
///     // outer.fmap_fn_mutref(|x| *x *= 2)
/// }
/// ```
pub trait FunctorSelf<'a, A>
where
    Self: Functor<'a, A, Inner = A, Mapped = Self>,
    A: 'a,
{
}

impl<'a, T, A> FunctorSelf<'a, A> for T
where
    T: Functor<'a, A, Inner = A, Mapped = Self>,
    A: 'a,
{
}

/// Generic type (e.g. `T<A>`) whose inner type can be mapped (e.g. resulting
/// in `T<B>`)
///
/// Type parameter `B` specifies the new inner type *after* the [`fmap`]
/// operation.
///
/// [`fmap`]: Self::fmap
///
/// # Examples
///
/// ## Implementing `Functor`
///
/// ```
/// # use fmap::Functor;
/// # struct Option<T>(T);
/// # impl<T> Option<T> {
/// #     pub fn map<U, F: FnOnce(T) -> U>(self, mut f: F) -> Option<U> {
/// #         Option(f(self.0))
/// #     }
/// # }
/// impl<'a, A, B> Functor<'a, B> for Option<A>
/// where
///     A: 'a,
///     B: 'a,
/// {
///     type Inner = A;
///     type Mapped = Option<B>;
///     fn fmap<F>(self, f: F) -> Self::Mapped
///     where
///         F: 'a + Send + FnMut(Self::Inner) -> B,
///     {
///         self.map(f)
///     }
/// }
/// ```
///
/// ### Using [`Functor::fmap`]
///
/// ```
/// use fmap::Functor;
///
/// let ok: Result<i32, i32> = Ok(2);
/// assert_eq!(ok.fmap(|x| x + 1), Ok(3));
///
/// let err: Result<i32, i32> = Err(0);
/// assert_eq!(err.fmap(|x| x + 1), Err(0));
///
/// let int_vec: Vec<i32> = vec![2, 3, 5];
/// let float_vec: Vec<f64> = int_vec.fmap(Into::into);
/// assert_eq!(float_vec, vec![2.0, 3.0, 5.0]);
///
/// fn convert_inner<'a, T, A, B>(outer: T) -> T::Mapped
/// where
///     // NOTE: `A` and `B` can be different types. Where `A` and `B`
///     // are always the same type, `FunctorSelf` should be used.
///     T: Functor<'a, B, Inner = A>,
///     A: 'a + Into<B>,
/// {
///     outer.fmap(Into::into)
/// }
///
/// let int_vec2: Vec<i32> = vec![7, 11, 13];
/// let float_vec2: Vec<f64> = convert_inner(int_vec2);
/// assert_eq!(float_vec2, vec![7.0, 11.0, 13.0]);
/// ```
///
/// Also see [`FunctorSelf`].
pub trait Functor<'a, B>
where
    Self: Sized,
    B: 'a,
{
    /// Inner type
    ///
    /// For any functor `T<A>`, where values of type `A` are passed to the
    /// [`Functor::fmap`] function, set `Inner = A`.
    type Inner: 'a;

    /// `Self` but with [inner type] mapped to `B`
    ///
    /// For any functor `T`, define like:
    /// `<T<A> as Functor<'a, B>>::Mapped = T<B>`.
    ///
    /// [inner type]: Functor::Inner
    type Mapped: Functor<'a, B, Inner = B, Mapped = Self::Mapped>
        + Functor<'a, Self::Inner, Inner = B, Mapped = Self>;

    /// Replaces inner type and value by applying a mapping function
    ///
    /// Where [`Functor::Inner`] and `B` are the same type, consider using
    /// [`Functor::fmap_fn_mutref`] or [`FunctorMut::fmap_mut`], which might
    /// provide specialized implementations that are more efficient.
    fn fmap<F>(self, f: F) -> Self::Mapped
    where
        F: 'a + Send + FnMut(Self::Inner) -> B;

    /// Same as [`Functor::fmap`] but uses a mapping function that takes a
    /// mutable reference
    ///
    /// This method has a default implementation that can be overridden if
    /// there is a more efficient way of mapping inner values in place.
    /// See also [`FunctorMut::fmap_mut`], which works on `&mut self`.
    ///
    /// For types which implement `FunctorMut` and where `fmap_mut`'s
    /// implementation doesn't use `fmap_fn_mutref`, consider to provide the
    /// following implementation:
    ///
    /// ```ignore
    /// fn fmap_fn_mutref<F>(mut self, f: F) -> Self
    /// where
    ///     F: 'a + Send + FnMut(&mut Self::Inner),
    /// {
    ///     self.fmap_mut(f);
    ///     self
    /// }
    /// ```
    fn fmap_fn_mutref<F>(self, mut f: F) -> Self
    where
        Self: FunctorSelf<'a, B>,
        F: 'a + Send + FnMut(&mut Self::Inner),
    {
        self.fmap(move |mut inner| {
            f(&mut inner);
            inner
        })
    }
}

/// Same as [`Functor`] but works on `&mut self`
///
/// This trait is not automatically implemented. If a type doesn't implement it
/// but implements [`Functor`], you can always use the
/// [`Functor::fmap_fn_mutref`] method, which has a default implementation.
///
/// # Examples
///
/// ```
/// # use fmap::FunctorMut;
/// fn double_inner_i32_in_place<'a, T>(outer: &mut T)
/// where
///     T: FunctorMut<'a, i32>,
/// {
///     outer.fmap_mut(|x| *x *= 2);
/// }
/// ```
pub trait FunctorMut<'a, A>
where
    Self: FunctorSelf<'a, A>,
    A: 'a,
{
    /// Same as [`Functor::fmap_fn_mutref`] but works on `&mut self`
    fn fmap_mut<F>(&mut self, f: F)
    where
        F: 'a + Send + FnMut(&mut Self::Inner);
}

/// A [`Contravariant`] functor that can be mapped to itself
///
/// This trait should be required as bound when the compiler shall infer that
/// the return type of [`Contravariant::contramap`] is `Self`.
pub trait ContravariantSelf<'a, A>
where
    Self: Contravariant<'a, A, Inner = A, Mapped = Self>,
    A: 'a,
{
}

impl<'a, T, A> ContravariantSelf<'a, A> for T
where
    T: Contravariant<'a, A, Inner = A, Mapped = Self>,
    A: 'a,
{
}

/// Contravariant functor
///
/// # Examples
///
/// ```
/// use fmap::Contravariant;
///
/// let mut output = String::new();
/// {
///     let mut string_printer: Box<dyn FnMut(String)> =
///         Box::new(|s| {
///             output.push_str(&s);
///         });
///     (string_printer)("Hello: ".to_string());
///     let mut int_printer: Box<dyn FnMut(i32)> =
///         string_printer.contramap(|n| format!("number {n}"));
///     (int_printer)(13);
/// }
///
/// assert_eq!(output, "Hello: number 13".to_string());
/// ```
pub trait Contravariant<'a, A>
where
    Self: Sized,
    A: 'a,
{
    /// Inner type
    ///
    /// For any contravariant functor `T<B>`, where values of type `B` are
    /// returned by the [`Contravariant::contramap`] function, set
    /// `Inner = B`.
    type Inner: 'a;

    /// `Self` but consuming `A` instead of [`Contravariant::Inner`]
    type Mapped: Contravariant<'a, A, Inner = A, Mapped = Self::Mapped>
        + Contravariant<'a, Self::Inner, Inner = A, Mapped = Self>;

    /// Returns an adapted version of `Self` with [`Contravariant::Inner`]
    /// replaced
    ///
    /// This method uses an adaption function `f: FnMut(A) -> B` to replace
    /// `Self::ContramapOut = B` with `A`.
    fn contramap<F>(self, f: F) -> Self::Mapped
    where
        F: 'a + Send + FnMut(A) -> Self::Inner;

    /// Same as [`Contravariant::contramap`] but uses a mapping function that
    /// takes a mutable reference
    fn contramap_fn_mutref<F>(self, mut f: F) -> Self
    where
        Self: ContravariantSelf<'a, A>,
        F: 'a + Send + FnMut(&mut Self::Inner),
    {
        self.contramap(move |mut inner| {
            f(&mut inner);
            inner
        })
    }
}

/// Same as [`ContravariantSelf`] but works on `&mut self`
pub trait ContravariantMut<'a, A>
where
    Self: ContravariantSelf<'a, A>,
    A: 'a,
{
    /// Same as [`Contravariant::contramap_fn_mutref`] but works on `&mut self`
    fn contramap_mut<F>(&mut self, f: F)
    where
        F: 'a + Send + FnMut(&mut Self::Inner);
}

/// A [`Functor`] that provides a [`pure`] operation to wrap a single inner
/// value
///
/// Use this trait to implement a monad's "return" function.
///
/// [`pure`]: Self::pure
///
/// # Examples
///
/// ```
/// use fmap::Pure;
/// assert_eq!(Vec::<i32>::pure(6), vec![6]);
/// ```
pub trait Pure<'a, B>
where
    Self: Functor<'a, B>,
    B: 'a,
{
    /// Wrap single value
    ///
    /// This is also called "return" in the context of monads.
    fn pure(b: B) -> Self::Mapped;
}

/// A [`Functor`] that is also a monad
///
/// *Note:* The `Monad` trait deliberately does not imply `Applicative`.
/// See documentation on [`Applicative`] for further information.
///
/// The method [`Monad::bind`] is a generalization of [`Option::and_then`] and
/// [`Result::and_then`]. Pinned boxed [`Future`]s are also monads. The `bind`
/// method will call the given closure on completion of the future. This monad
/// implementation doesn't require [`Future::Output`] to be a [`Result`] and it
/// will thus not short-circuit when a [`Result::Err`] is returned. Therefore,
/// it rather behaves like `.then` (instead of `.and_then`) on futures.
///
/// Nested monads automatically implement [`NestedMonad`] and can be joined
/// with [`NestedMonad::mjoin`], which is equivalent to `.bind(|x| x)`.
///
/// [`Future`]: std::future::Future
/// [`Future::Output`]: std::future::Future::Output
///
/// # Examples
///
/// ```
/// use fmap::Monad;
///
/// let a = vec![5, 6, 7];
/// let b = a.bind(|x| vec![2*x, 10*x]);
/// assert_eq!(b, vec![10, 50, 12, 60, 14, 70]);
///
/// let a: Box<dyn Iterator<Item = i32>> = Box::new(vec![5, 6, 7].into_iter());
/// let b = a.bind(|x| Box::new(vec![2*x, 10*x].into_iter()));
/// assert_eq!(b.collect::<Vec<_>>(), vec![10, 50, 12, 60, 14, 70]);
///
/// let nested = vec![vec![1, 3], vec![2, 9, 9]];
/// assert_eq!(nested.bind(|x| x), vec![1, 3, 2, 9, 9]);
/// ```
///
/// Note: `.bind(|x| x)` is also available as [`NestedMonad::mjoin`]
pub trait Monad<'a, B>
where
    Self: Pure<'a, B>,
    B: 'a,
{
    /// Call function with [inner values], returning [mapped] version of `Self`
    ///
    /// [inner values]: Functor::Inner
    /// [mapped]: Functor::Mapped
    fn bind<F>(self, f: F) -> Self::Mapped
    where
        F: 'a + Send + FnMut(Self::Inner) -> Self::Mapped;
}

/// Nested monad that can be [joined]
///
/// This trait is automatically implemented for nested monads with type
/// parameter `A` being the inner monad.
///
/// [joined]: Self::mjoin
///
/// # Examples
///
/// ```
/// use fmap::NestedMonad;
///
/// fn my_mjoin<'a, M: NestedMonad<'a, A>, A>(m: M) -> A
/// where
///     M: NestedMonad<'a, A>,
///     A: 'a,
/// {
///     m.bind(|x| x)
/// }
///
/// let nested = vec![vec![1, 3], vec![2, 9, 9]];
/// assert_eq!(my_mjoin(nested.clone()), vec![1, 3, 2, 9, 9]);
/// assert_eq!(nested.mjoin(), vec![1, 3, 2, 9, 9]);
/// ```
pub trait NestedMonad<'a, A>
where
    Self: Monad<'a, <Self::InnerMonad as Functor<'a, A>>::Inner>,
    Self: Functor<
        'a,
        <Self::InnerMonad as Functor<'a, A>>::Inner,
        Inner = A,
        Mapped = A,
    >,
    A: 'a,
{
    /// Helper type always equal to `A`
    ///
    /// This type is needed to circumvent
    /// [Rust issue #20671](https://github.com/rust-lang/rust/issues/20671).
    type InnerMonad: Functor<'a, A>;
    /// Generic join
    ///
    /// `.mjoin()` is equivalent to `.bind(|x| x)`.
    fn mjoin(self) -> A {
        self.bind(|x| x)
    }
}

impl<'a, T, A> NestedMonad<'a, A> for T
where
    T: Monad<'a, <A as Functor<'a, A>>::Inner>,
    A: Functor<'a, A>,
    T: Functor<'a, <A as Functor<'a, A>>::Inner, Inner = A, Mapped = A>,
    A: 'a,
{
    type InnerMonad = A;
}

/// Generic implementation of [`Functor::fmap`] for [`Monad`]s
///
/// This generic implementation can be used to define `Functor::fmap` based on
/// [`Monad::bind`] and [`Pure::pure`] when the functor is also a monad. A more
/// specific implementation might be more efficient though.
pub fn monad_fmap<'a, T, B, F>(monad: T, mut f: F) -> T::Mapped
where
    T: Monad<'a, B>,
    B: 'a,
    F: 'a + Send + FnMut(T::Inner) -> B,
{
    monad.bind(move |inner| T::pure(f(inner)))
}

/// A [boxed] closure argument to [`<T as Functor<'a, B>>::fmap`], needed for
/// [`Applicative`]
///
/// Closures must be boxed when being the [inner type] of an [`Applicative`]
/// functor that is passed to [`Applicative::apply`].
///
/// [boxed]: Box
/// [`<T as Functor<'a, B>>::fmap`]: Functor::fmap
/// [inner type]: Functor::Inner
pub type BoxMapper<'a, T, B> =
    Box<dyn 'a + Send + FnMut(<T as Functor<'a, B>>::Inner) -> B>;

/// An applicative [`Functor`]
///
/// *Note:* In functional programming, every monad is also an applicative
/// functor. The [`Monad`] trait, however, does not have `Applicative` as
/// superclass, because it is not possible to provide a corresponding
/// `Applicative` implementation for every monad. The reason is that (unlike in
/// functional programming) values in Rust may be moved and only used once. The
/// `Applicative` implementation for `Vec<A>` demands `A: Clone`, for example,
/// while the `Monad` implementation for `Vec<A>` does not put any bounds on
/// `A`. The requirements for a monad to be able to implement
/// [`Applicative::apply`] through [`monad_apply`] are:
///
/// * The monad must have a lifetime of `'a`.
/// * The monad must be [`Send`].
/// * The monad must be [`Clone`].
/// * The monad must support a [boxed mapper] as [inner value] (which is the
///   case when it implements the [`MonadWithMapper`] trait).
///
/// [boxed mapper]: BoxMapper
/// [inner value]: Functor::Inner
///
/// # Examples
///
/// ```
/// use fmap::Applicative;
///
/// let f: Vec<Box<dyn Send + FnMut(i32) -> i32>> =
///     vec![Box::new(|x| x), Box::new(|x| x * 100)];
/// let a = vec![4, 7, 9];
/// let b = a.apply(f);
/// assert_eq!(b, vec![4, 7, 9, 400, 700, 900]);
/// ```
pub trait Applicative<'a, B>
where
    Self: Pure<'a, B>,
    Self: Pure<'a, BoxMapper<'a, Self, B>>,
    B: 'a,
{
    /// Like [`Functor::fmap`], but takes a wrapped (and boxed) mapping
    /// function
    fn apply(
        self,
        f: <Self as Functor<'a, BoxMapper<'a, Self, B>>>::Mapped,
    ) -> <Self as Functor<'a, B>>::Mapped;
}

/// Generic implementation of [`Functor::fmap`] for [`Applicative`] functors
///
/// This generic implementation can be used to define `Functor::fmap` based on
/// [`Applicative::apply`] and [`Pure::pure`] when the functor is applicative.
/// A more specific implementation might be more efficient though.
pub fn applicative_fmap<'a, T, B, F>(
    applicative: T,
    f: F,
) -> <T as Functor<'a, B>>::Mapped
where
    T: Applicative<'a, B>,
    F: 'a + Send + FnMut(<T as Functor<'a, B>>::Inner) -> B,
{
    applicative.apply(T::pure(Box::new(f) as BoxMapper<'a, T, B>))
}

/// A [`Monad`] that can have a [boxed mapping closure] as an [inner value]
///
/// This trait is one of [`monad_apply`]'s bounds.
///
/// [boxed mapping closure]: BoxMapper
/// [inner value]: Functor::Inner
pub trait MonadWithMapper<'a, B>
where
    Self: Monad<'a, B>,
    Self: Pure<'a, BoxMapper<'a, Self, B>>,
    B: 'a,
{
    /// The [`Monad`] with the boxed mapping closure as [inner value]
    ///
    /// [inner value]: Functor::Inner
    type MapperMonad: Functor<
            'a,
            B,
            Inner = BoxMapper<'a, Self, B>,
            Mapped = <Self as Functor<'a, B>>::Mapped,
        > + Monad<'a, B>
        + Pure<'a, BoxMapper<'a, Self, B>>;
}

impl<'a, T, B> MonadWithMapper<'a, B> for T
where
    T: Monad<'a, B>,
    T: Pure<'a, BoxMapper<'a, T, B>>,
    <T as Functor<'a, BoxMapper<'a, T, B>>>::Mapped: Functor<
            'a,
            B,
            Inner = BoxMapper<'a, T, B>,
            Mapped = <T as Functor<'a, B>>::Mapped,
        > + Monad<'a, B>
        + Pure<'a, BoxMapper<'a, T, B>>,
    B: 'a,
{
    type MapperMonad = <T as Functor<'a, BoxMapper<'a, T, B>>>::Mapped;
}

/// Generic implementation of [`Applicative::apply`] for [`Monad`]s
///
/// This generic implementation can be used to define `Applicative::apply`
/// based on [`Monad::bind`], [`Functor::fmap`], and [`Clone::clone`] when the
/// applicative functor is also a monad and is `Send` and `Clone`. A more
/// specific implementation might be more efficient.
pub fn monad_apply<'a, T, B>(
    monad: T,
    f: T::MapperMonad,
) -> <T as Functor<'a, B>>::Mapped
where
    T: 'a + Send + Clone,
    T: MonadWithMapper<'a, B>,
{
    f.bind(move |inner| monad.clone().fmap(inner))
}