1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
//! [Flyr](https://bitbucket.org/nimmerwoner/flyr-rs/) is a library for extracting thermal data
//! from FLIR images written fully in Rust. Files can be read with a single function call
//! returning a 2D array with the temperatures in Kelvin.
//!
//! Flyr's abilities are showcased by [Blackbody](https://bitbucket.org/nimmerwoner/blackbody/src/b8dfcf7116abdeff1f0c986e9f0830a5b4d4e942/PREVIEW.md),
//! a thermogram viewer for Linux. Flyr itself is not tied to a specific OS. The project also has a
//! sibling project in [flyr-py](https://bitbucket.org/nimmerwoner/flyr/src/master/), which is
//! Flyr fully written in Python.
//!
//! # Installation
//! This library is available on [crates.io](https://crates.io/crates/flyr). Install
//! by adding `flyr = "0.4.0"` to your Cargo.toml. The source code can be found in
//! its [repository](https://bitbucket.org/nimmerwoner/flyr-rs/).
//!
//! # Usage
//! Call `try_parse_flir` on a filepath to extract the thermal data:
//!
//! ```rust
//! use flyr::try_parse_flir;
//!
//! fn main() {
//!    // Return value is of type Result<Array<f32, Ix2> std::io::Error>
//!     let file_path = Path::new("/home/user/FLIR0923.jpg");
//!     let r_kelvin = try_parse_flir(file_path);
//! }
//! ```
//!
//! The array structure is provided by [https://crates.io/crates/ndarray](https://crates.io/crates/ndarray).
//!
//! # Status
//! Currently this library has been tested to work with:
//!
//! * FLIR E4
//! * FLIR E6
//! * FLIR E8
//! * FLIR E8XT
//! * FLIR E53
//! * FLIR E75
//! * FLIR T630SC
//! * FLIR T660
//!
//! Camera's found not to work (yet):
//!
//! * FLIR E60BX
//! * FLIR ThermoCAM B400
//! * FLIR ThermaCAM SC640
//! * FLIR ThermaCam SC660 WES
//! * FLIR ThermaCAM T-400
//! * FLIR S60 NTSC
//! * FLIR SC620 Western
//! * FLIR T400 (Western)
//! * FLIR T640
//! * FLIR P660
//!
//! # See also
//! The [ndarray](https://crates.io/crates/ndarray) crate for details on how to use ndarrays.

use binread::io::Read;
use binread::io::Seek;
use binread::*;
use ndarray::*;

use std::collections::HashMap;
use std::io;
use std::io::Cursor;
use std::io::SeekFrom;
use std::path::Path;

/// Tries to read a FLIR file, returning a 2D array of f32s from the `ndarray` crate if successful,
/// otherwise an error.
///
/// # Arguments
/// * `file_path` - A path to the file to open
///
/// # Returns
/// A two-dimensional array of 32-bit floats if successful, otherwise an error of type
/// `std::io::Error`.  The array has height as the first axis and width as second. The data is not
/// rotated to compensate for the camera being held on its side (or otherwise).
///
/// # Examples
/// ```rust
/// use flyr::try_parse_flir;
///
/// fn main() {
///     // Return value is of type Result<Array<f32, Ix2> std::io::Error>
///     let file_path = Path::new("/home/user/FLIR0923.jpg");
///     let r_kelvin = try_parse_flir(file_path);
/// }
/// ```
///
/// # See also
/// The [`ndarray`](https://crates.io/crates/ndarray) crate for details on how to use the array.
pub fn try_parse_flir(file_path: &Path) -> Result<Array<f32, Ix2>, io::Error> {
    let bytes = std::fs::read(file_path)?;
    read_flir_jpeg_stream(&mut bytes.as_slice())
}

fn read_flir_jpeg_stream(bytes: &[u8]) -> Result<Array<f32, Ix2>, io::Error> {
    let app1 = extract_flir_app1(bytes)?;
    let record_directory = parse_record_directory(&app1.as_slice())?;

    let dir_entries = parse_dir_entries(&app1.as_slice(), &record_directory);
    let o_enum_raw_data = dir_entries.get(&1);
    let o_enum_cam_info = dir_entries.get(&32);
    match (o_enum_raw_data, o_enum_cam_info) {
        (Some(FlirRecordType::RawData(raw_data)), Some(FlirRecordType::CameraInfo(cam_info))) => {
            parse_thermal(raw_data, cam_info)
        }
        _ => Err(io::Error::new(
            io::ErrorKind::Other,
            "Parsing thermal data failed",
        ))
    }
}

fn extract_flir_app1(bytes: &[u8]) -> Result<Vec<u8>, io::Error> {
    let mut flir_app1_bytes = Vec::new();

    for (idx, byte) in bytes.into_iter().enumerate() {
        if byte != &b'\xff' {
            continue;
        }

        let mut c = Cursor::new(&bytes[idx..]);
        match c.read_be::<FlirApp1Chunk>() {
            Ok(chunk) => flir_app1_bytes.extend(chunk.data),
            _ => (),
        }
    }

    Ok(flir_app1_bytes)
}

fn parse_record_directory(bytes: &[u8]) -> Result<Vec<FlirRecordEntryMetadata>, io::Error> {
    let mut c = Cursor::new(&bytes);
    let mut record_directory = Vec::with_capacity(10);
    while let Ok(record) = c.read_be::<FlirRecord>() {
        let mut cursor = Cursor::new(&bytes);
        cursor.seek(SeekFrom::Current(record.offset_record as i64))?;

        let capacity = 32usize * record.num_record_entries as usize;
        let mut dir_bytes_buf = vec![0u8; capacity];

        cursor.read(dir_bytes_buf.as_mut_slice())?;
        let mut dir_bytes = Cursor::new(&dir_bytes_buf);
        while let Ok(e_entry_md) = dir_bytes.read_be::<FlirRecordEntryMetadata>() {
            record_directory.push(e_entry_md);
        }
    }

    Ok(record_directory)
}

enum FlirRecordType {
    RawData(FlirRawData),
    CameraInfo(FlirCameraInfo),
}

fn parse_dir_entries(
    bytes: &[u8],
    record_directory: &Vec<FlirRecordEntryMetadata>,
) -> HashMap<u16, FlirRecordType> {
    let mut entries: HashMap<u16, FlirRecordType> = HashMap::new();
    for dir_entry in record_directory.iter() {
        match parse_dir_entry(bytes, dir_entry) {
            Ok(entry) => entries.insert(dir_entry.record_type, entry),
            _ => None,
        };
    }

    entries
}

fn parse_dir_entry(
    bytes: &[u8],
    metadata: &FlirRecordEntryMetadata,
) -> Result<FlirRecordType, io::Error> {
    match metadata.record_type {
        1 => Ok(FlirRecordType::RawData(parse_raw_data(bytes, metadata)?)),
        32 => Ok(FlirRecordType::CameraInfo(parse_camera_info(
            bytes, metadata,
        )?)),
        _ => Err(io::Error::new(io::ErrorKind::NotFound, "Nothing")),
    }
}

fn parse_raw_data(
    bytes: &[u8],
    metadata: &FlirRecordEntryMetadata,
) -> Result<FlirRawData, io::Error> {
    // Array<f32, Ix2>
    let start = metadata.offset as usize;
    let end = start + metadata.length as usize;
    let raw_data_bytes = &bytes[start..end]; // flir_app1_bytes

    // println!("RAW WH {:?}x{:?}  -->  Lengths: {:?} =? {:?} =? {:?}",
    //     raw_data.raw_thermal_image_width,
    //     raw_data.raw_thermal_image_height,
    //     raw_data.raw_thermal_image_width as u64 * raw_data.raw_thermal_image_height as u64,
    //     metadata.length,
    //     raw_data.raw_thermal_image.len(),
    // );
    // println!("IMG: {:?}", image::guess_format(raw_data.raw_thermal_image.as_slice()));
    match Cursor::new(raw_data_bytes).read_be::<FlirRawData>() {
        Ok(raw_data) => Ok(raw_data),
        _ => Err(io::Error::new(io::ErrorKind::InvalidData, "Failed reading FLIR image's raw data")),
    }
}

fn parse_camera_info(
    bytes: &[u8],
    metadata: &FlirRecordEntryMetadata,
) -> Result<FlirCameraInfo, io::Error> {
    let start = metadata.offset as usize;
    let end = start + metadata.length as usize;
    let camera_info_bytes = &bytes[start..end];

    match Cursor::new(camera_info_bytes).read_be::<FlirCameraInfo>() {
        Ok(camera_info) => Ok(camera_info),
        _ => Err(io::Error::new(io::ErrorKind::InvalidData, "Failed reading FLIR image's camera info")),
    }
}

fn parse_thermal(
    raw_data: &FlirRawData,
    cam_info: &FlirCameraInfo,
) -> Result<Array<f32, Ix2>, io::Error> {
    let r_thermal_img = image::load_from_memory(raw_data.raw_thermal_image.as_slice());
    match r_thermal_img {
        Ok(thermal_img) => {
            let vals = Vec::from(thermal_img.as_flat_samples_u16().unwrap().as_slice());
            let arr = Array::from(vals);  // FIXME unwrap in line above
            let arr = arr.map(|x| (x >> 8) + ((x & 0x00FF) << 8));

            let shape = (
                raw_data.raw_thermal_image_height.into(),
                raw_data.raw_thermal_image_width.into(),
            );
            let arr = arr.into_shape(shape).unwrap(); // FIXME unwrap
            let arr = translate_raw2kelvin(arr, cam_info);

            Ok(arr)
        }
        _ => Err(io::Error::new(
            io::ErrorKind::InvalidData,
            "Raw thermal is not a valid image",
        ))
    }
}

fn translate_raw2kelvin(raw: Array<u16, Ix2>, info: &FlirCameraInfo) -> Array<f32, Ix2> {
    // Transmission through window (calibrated)
    let emiss_wind = 1.0 - info.ir_window_transmission;
    let refl_wind = 0.0;

    // Transmission through the air
    let water = info.relative_humidity
        * std::f32::consts::E.powf(
            1.5587 + 0.06939 * (info.atmospheric_temperature - 273.15)
                - 0.00027816 * (info.atmospheric_temperature - 273.15).powf(2.0)
                + 0.00000068455 * (info.atmospheric_temperature - 273.15).powf(3.0),
        );

    let calc_atmos = |alpha: f32, beta: f32| -> f32 {
        let term1 = (info.object_distance / 2.0).sqrt();
        let term2 = alpha + beta * water.sqrt();
        std::f32::consts::E.powf(term1 * term2)
    };

    let atmos1 = calc_atmos(info.atmospheric_trans_alpha1, info.atmospheric_trans_beta1);
    let atmos2 = calc_atmos(info.atmospheric_trans_alpha2, info.atmospheric_trans_beta2);
    let tau1 = info.atmospheric_trans_x * atmos1 + (1.0 - info.atmospheric_trans_x) * atmos2;
    let tau2 = info.atmospheric_trans_x * atmos1 + (1.0 - info.atmospheric_trans_x) * atmos2; // FIXME CHECK

    // Radiance from the environment
    let plancked = |t: f32| -> f32 {
        let planck_tmp =
            info.planck_r2 * (std::f32::consts::E.powf(info.planck_b / t) - info.planck_f);
        info.planck_r1 / planck_tmp - (info.planck_o as f32)
    };

    let raw_refl1 = plancked(info.reflected_apparant_temperature);
    let raw_refl1_attn = (1.0 - info.emissivity) / info.emissivity * raw_refl1;

    let raw_atm1 = plancked(info.atmospheric_temperature);
    let raw_atm1_attn = (1.0 - tau1) / info.emissivity / tau1 * raw_atm1;

    let term3 = info.emissivity * tau1 * info.ir_window_transmission;
    let raw_wind = plancked(info.ir_window_temperature);
    let raw_wind_attn = emiss_wind / term3 * raw_wind;

    let raw_refl2 = plancked(info.reflected_apparant_temperature);
    let raw_refl2_attn = refl_wind / term3 * raw_refl2;

    let raw_atm2 = plancked(info.atmospheric_temperature);
    let raw_atm2_attn = (1.0 - tau2) / term3 / tau2 * raw_atm2;

    let subtraction =
        raw_atm1_attn + raw_atm2_attn + raw_wind_attn + raw_refl1_attn + raw_refl2_attn;

    let raw_obj = raw.mapv(|v| v as f32);
    let mut raw_obj = raw_obj / info.emissivity * tau1 * info.ir_window_transmission * tau2;
    raw_obj -= subtraction;

    // Temperature from radiance
    raw_obj += info.planck_o as f32;
    raw_obj *= info.planck_r2;
    let planck_term = info.planck_r1 / raw_obj + info.planck_f;

    info.planck_b / planck_term.ln()
}

trait Logarithmic {
    fn ln(&self) -> Self;
    fn log(&self, n: f32) -> Self;
    fn log2(&self) -> Self;
    fn log10(&self) -> Self;
}

impl Logarithmic for Array<f32, Ix2> {
    fn ln(&self) -> Self {
        self.mapv(|v| v.ln())
    }

    fn log(&self, base: f32) -> Self {
        self.mapv(|v| v.log(base))
    }

    fn log2(&self) -> Self {
        self.mapv(|v| v.log2())
    }

    fn log10(&self) -> Self {
        self.mapv(|v| v.log10())
    }
}

fn raw_thermal_parser<R: Read + Seek>(
    reader: &mut R,
    _ro: &ReadOptions,
    _: (),
) -> BinResult<Vec<u8>> {
    let mut buf = [0; 1]; // TODO Make buf a larger, more reasonable size and truncate when smaller
    let mut raw_thermal = Vec::new();
    while let Ok(read_length) = reader.read(&mut buf) {
        if read_length != buf.len() {
            break;
        }
        raw_thermal.push(buf[0]);
    }
    Ok(raw_thermal)
}

#[allow(dead_code)]
#[derive(Debug, BinRead)]
#[br(magic = b"\xff\xe1", assert(&magic_flir == b"FLIR\x00"))]
struct FlirApp1Chunk {
    length: u16,
    magic_flir: [u8; 5],
    skip_byte: u8,
    chunk_idx: u8,
    num_chunks: u8,
    #[br(big, count = length - 10)]
    data: Vec<u8>,
}

#[allow(dead_code)]
#[derive(Debug, BinRead)]
#[br(magic = b"FFF\0")]
struct FlirRecord {
    creator: [u8; 16],
    file_format_version: u32,
    offset_record: u32,
    num_record_entries: u32,
    next_free_idx: u32,
    swap_pattern: u16,
    spares: [u16; 7],
    reserved: [u32; 2],
    checksum: u32,
}

#[allow(dead_code)]
#[derive(Debug, BinRead)]
struct FlirRecordEntryMetadata {
    record_type: u16,
    record_subtype: u16,
    record_version: u32,
    index_id: u32,
    offset: u32,
    length: u32,
    parent: u32,
    object_number: u32,
    checksum: u32,
}

#[derive(Debug, BinRead)]
#[br(little)]
struct FlirCameraInfo {
    #[br(pad_before = 32)]
    emissivity: f32,
    object_distance: f32,
    reflected_apparant_temperature: f32,
    atmospheric_temperature: f32,
    ir_window_temperature: f32,
    ir_window_transmission: f32,
    #[br(pad_before = 4)]
    relative_humidity: f32,
    #[br(pad_before = 24)]
    planck_r1: f32,
    planck_b: f32,
    planck_f: f32,
    #[br(pad_before = 12)]
    atmospheric_trans_alpha1: f32,
    atmospheric_trans_alpha2: f32,
    atmospheric_trans_beta1: f32,
    atmospheric_trans_beta2: f32,
    atmospheric_trans_x: f32,
    #[br(pad_before = 644)]
    planck_o: i32, // TODO CHECK
    planck_r2: f32,
}

#[allow(dead_code)]
#[derive(Debug, BinRead)]
struct FlirRawData {
    #[br(pad_before = 2)]
    #[br(little)]
    raw_thermal_image_width: u16,
    #[br(little)]
    raw_thermal_image_height: u16,
    raw_thermal_image_type: u16,
    #[br(pad_before = 24)]
    #[br(parse_with = raw_thermal_parser)]
    raw_thermal_image: Vec<u8>,
}


// File format references:
// * http://vip.sugovica.hu/Sardi/kepnezo/JPEG%20File%20Layout%20and%20Format.htm
// * https://en.wikipedia.org/wiki/JPEG#Syntax_and_structure
// * http://gvsoft.no-ip.org/exif/exif-explanation.html
// * https://dev.exiv2.org/projects/exiv2/wiki/The_Metadata_in_JPEG_files
// * https://rdrr.io/cran/Thermimage/man/readflirJPG.html
// * https://exiftool.org/TagNames/FLIR.html
// * https://github.com/kamadak/exif-rs https://docs.rs/kamadak-exif/0.5.1/exif/
// * https://crates.io/crates/implex
// * https://github.com/vadixidav/exifsd https://docs.rs/exifsd/0.1.0/exifsd/