1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
// Copyright 2014 Optimal Computing (NZ) Ltd.
// Licensed under the MIT license.  See LICENSE for details.

//! Defines traits `ApproxEq`, `ApproxOrd`, and `Ulps`, for approximate
//! comparison of floating point types.  Defines implementations for `f32`
//! and `f64`
//!
//! Floating point operations must round answers to the nearest representable
//! number.  Multiple operations, then, may result in an answer different than
//! what you expect.  In the following example, the assert will fail, even
//! though the printed output says "0.45 == 0.45":
//!
//! ```should_fail
//!   let a = 0.15_f32 + 0.15_f32 + 0.15_f32;
//!   let b = 0.1_f32 + 0.1_f32 + 0.25_f32;
//!   println!("{} == {}", a, b);
//!   assert!(a==b)  // Fails, because they are not exactly equal
//! ```
//!
//! With an approximate comparison, we could get the answer we intend:
//!
//! ```
//!   # extern crate float_cmp;
//!   # use float_cmp::ApproxEq;
//!   # fn main() {
//!   let a = 0.15_f32 + 0.15_f32 + 0.15_f32;
//!   let b = 0.1_f32 + 0.1_f32 + 0.25_f32;
//!   println!("{} == {}", a, b);
//!   assert!(a.approx_eq(&b,2)) // They are equal, within 2 ulps
//!   # }
//! ```
//!
//! We use the term "ulp" (units in the last place, or units of least precision)
//! to mean the unit of distance between two adjacent floating point
//! representations (adjacent meaning that there is no floating point number
//! between them).  The size of an ulp (measured as a float) varies depending
//! on the exponents of the floating point numbers in question, but this is quite
//! useful, for it is the non-variation of a fixed epsilon (e.g. 0.0000001) which
//! causes epsilon-based comparisons to so often fail with more extreme floating
//! point values.
//!
//! What we do is define approximate comparison by specifying the maximum number
//! of ULPs that the comparands are allowed to differ by.

use std::mem;
use std::cmp::Ordering;

pub trait Ulps {
    type U;

    /// How many ULPs apart the two floating point numbers are.
    fn ulps(&self, other: &Self) -> <Self as Ulps>::U;
}

impl Ulps for f32 {
    type U = i32;

    fn ulps(&self, other: &f32) -> i32 {

        // IEEE754 defined floating point storage representation to
        // maintain their order when their bit patterns are interpreted as
        // integers.  This is a huge boon to the task at hand, as we can
        // (unsafely) cast to integers to find out how many ULPs apart any
        // two floats are

        // Setup integer representations of the input
        let ai32: i32 = unsafe { mem::transmute(*self) };
        let bi32: i32 = unsafe { mem::transmute(*other) };

        ai32.wrapping_sub(bi32)
    }
}

#[test]
fn f32_ulps_test1() {
    let x: f32 = 1000000_f32;
    let y: f32 = 1000000.1_f32;
    println!("DIST IS {}",x.ulps(&y));
    assert!(x.ulps(&y) == -2);
}

#[test]
fn f32_ulps_test2() {
    let pzero: f32 = unsafe { mem::transmute(0x00000000_u32) };
    let nzero: f32 = unsafe { mem::transmute(0x80000000_u32) };
    println!("DIST IS {}",pzero.ulps(&nzero));
    assert!(pzero.ulps(&nzero) == -2147483648);
}
#[test]
fn f32_ulps_test3() {
    let pinf: f32 = unsafe { mem::transmute(0x7f800000_u32) };
    let ninf: f32 = unsafe { mem::transmute(0xff800000_u32) };
    println!("DIST IS {}",pinf.ulps(&ninf));
    assert!(pinf.ulps(&ninf) == -2147483648);
}

#[test]
fn f32_ulps_test4() {
    let x: f32 = unsafe { mem::transmute(0x63a7f026_u32) };
    let y: f32 = unsafe { mem::transmute(0x63a7f023_u32) };
    println!("DIST IS {}",x.ulps(&y));
    assert!(x.ulps(&y) == 3);
}

impl Ulps for f64 {
    type U = i64;

    fn ulps(&self, other: &f64) -> i64 {

        // IEEE754 defined floating point storage representation to
        // maintain their order when their bit patterns are interpreted as
        // integers.  This is a huge boon to the task at hand, as we can
        // (unsafely) cast to integers to find out how many ULPs apart any
        // two floats are

        // Setup integer representations of the input
        let ai64: i64 = unsafe { mem::transmute(*self) };
        let bi64: i64 = unsafe { mem::transmute(*other) };

        ai64.wrapping_sub(bi64)
    }
}

#[test]
fn f64_ulps_test1() {
    let x: f64 = 1000000_f64;
    let y: f64 = 1000000.00000001_f64;
    println!("DIST IS {}",x.ulps(&y));
    assert!(x.ulps(&y) == -86);
}

#[test]
fn f64_ulps_test2() {
    let pzero: f64 = unsafe { mem::transmute(0x0000000000000000_u64) };
    let nzero: f64 = unsafe { mem::transmute(0x8000000000000000_u64) };
    println!("DIST IS {}",pzero.ulps(&nzero));
    assert!(pzero.ulps(&nzero) == -9223372036854775808i64);
}
#[test]
fn f64_ulps_test3() {
    let pinf: f64 = unsafe { mem::transmute(0x7f80000000000000_u64) };
    let ninf: f64 = unsafe { mem::transmute(0xff80000000000000_u64) };
    println!("DIST IS {}",pinf.ulps(&ninf));
    assert!(pinf.ulps(&ninf) == -9223372036854775808i64);
}

#[test]
fn f64_ulps_test4() {
    let x: f64 = unsafe { mem::transmute(0xd017f6cc63a7f026_u64) };
    let y: f64 = unsafe { mem::transmute(0xd017f6cc63a7f023_u64) };
    println!("DIST IS {}",x.ulps(&y));
    assert!(x.ulps(&y) == 3);
}

/**
 * ApproxEq is a trait for approximate equality comparisons, and is defined only
 * for floating point types.
 */
pub trait ApproxEq : Ulps {
    /// This method tests for `self` and `other` values to be approximately equal
    /// within `ulps` floating point representations.  See module documetation
    /// for an understanding of `ulps`.
    fn approx_eq(&self, other: &Self, ulps: <Self as Ulps>::U) -> bool;

    /// This method tests for `self` and `other` values to be not approximately
    /// equal, not within `ulps` floating point representations.  See module
    /// documetation for an understanding of `ulps`.
    #[inline]
    fn approx_ne(&self, other: &Self, ulps: <Self as Ulps>::U) -> bool {
        !self.approx_eq(other, ulps)
    }
}

impl ApproxEq for f32 {
    fn approx_eq(&self, other: &f32, ulps: i32) -> bool {
        // -0 and +0 are drastically far in ulps terms, so
        // we need a special case for that.
        if *self==*other { return true; }

        // Handle differing signs as a special case, even if
        // they are very close, most people consider them
        // unequal.
        if *self>0_f32 && *other<0_f32 { return false; }
        if *self<0_f32 && *other>0_f32 { return false; }

        let diff: i32 = self.ulps(other);
        diff >= -ulps && diff <= ulps
    }
}

#[test]
fn f32_approx_eq_test1() {
    let f: f32 = 0.1_f32;
    let mut sum: f32 = 0.0_f32;
    for _ in (0_isize..10_isize) { sum += f; }
    let product: f32 = f * 10.0_f32;
    assert!(sum != product); // Should not be directly equal:
    println!("Ulps Difference: {}",sum.ulps(&product));
    assert!(sum.approx_eq(&product,1) == true); // But should be close
    assert!(sum.approx_eq(&product,0) == false);
}
#[test]
fn f32_approx_eq_test2() {
    let x: f32 = 1000000_f32;
    let y: f32 = 1000000.1_f32;
    assert!(x != y); // Should not be directly equal
    println!("Ulps Difference: {}",x.ulps(&y));
    assert!(x.approx_eq(&y,2) == true);
    assert!(x.approx_eq(&y,1) == false);
}
#[test]
fn f32_approx_eq_test_zeroes() {
    let x: f32 = 0.0_f32;
    let y: f32 = -0.0_f32;
    assert!(x.approx_eq(&y,0) == true);
}

impl ApproxEq for f64 {
    fn approx_eq(&self, other: &f64, ulps: i64) -> bool {
        // -0 and +0 are drastically far in ulps terms, so
        // we need a special case for that.
        if *self==*other { return true; }

        // Handle differing signs as a special case, even if
        // they are very close, most people consider them
        // unequal.
        if *self>0_f64 && *other<0_f64 { return false; }
        if *self<0_f64 && *other>0_f64 { return false; }

        let diff: i64 = self.ulps(other);
        diff >= -ulps && diff <= ulps
    }
}

#[test]
fn f64_approx_eq_test1() {
    let f: f64 = 0.1_f64;
    let mut sum: f64 = 0.0_f64;
    for _ in (0_isize..10_isize) { sum += f; }
    let product: f64 = f * 10.0_f64;
    assert!(sum != product); // Should not be directly equal:
    println!("Ulps Difference: {}",sum.ulps(&product));
    assert!(sum.approx_eq(&product,1) == true); // But should be close
    assert!(sum.approx_eq(&product,0) == false);
}
#[test]
fn f64_approx_eq_test2() {
    let x: f64 = 1000000_f64;
    let y: f64 = 1000000.0000000003_f64;
    assert!(x != y); // Should not be directly equal
    println!("Ulps Difference: {}",x.ulps(&y));
    assert!(x.approx_eq(&y,3) == true);
    assert!(x.approx_eq(&y,2) == false);
}
#[test]
fn f64_approx_eq_test_zeroes() {
    let x: f64 = 0.0_f64;
    let y: f64 = -0.0_f64;
    assert!(x.approx_eq(&y,0) == true);
}

/**
 * ApproxOrd is for sorting floating point values where approximate equality
 * is considered equal.
 */
pub trait ApproxOrd: ApproxEq + Ulps {
    /// This method returns an ordering between `self` and `other` values
    /// if one exists, where Equal is returned if they are approximately
    /// equal within `ulps` floating point representations.  See module
    /// documentation for an understanding of `ulps`
    fn approx_cmp(&self, other: &Self, ulps: <Self as Ulps>::U) -> Ordering;

    /// This method tests less than (for `self` < `other`), where values
    /// within `ulps` of each other are not less than.  See module
    /// documentation for an understanding of `ulps`.
    #[inline]
    fn approx_lt(&self, other: &Self, ulps: <Self as Ulps>::U) -> bool {
        match self.approx_cmp(other, ulps) {
            Ordering::Less => true,
            _ => false,
        }
    }

    /// This method tests less than or equal to (for `self` <= `other`)
    /// where values within `ulps` are equal.  See module documentation
    /// for an understanding of `ulps`.
    #[inline]
    fn approx_le(&self, other: &Self, ulps: <Self as Ulps>::U) -> bool {
        match self.approx_cmp(other, ulps) {
            Ordering::Less | Ordering::Equal => true,
            _ => false,
        }
    }

    /// This method tests greater than (for `self` > `other`)
    /// where values within `ulps` are not greater than.  See module
    /// documentation for an understanding of `ulps`
    #[inline]
    fn approx_gt(&self, other: &Self, ulps: <Self as Ulps>::U) -> bool {
        match self.approx_cmp(other, ulps) {
            Ordering::Greater => true,
            _ => false,
        }
    }

    /// This method tests greater than or equal to (for `self` > `other`)
    /// where values within `ulps` are equal.  See module documentation
    /// for an understanding of `ulps`.
    #[inline]
    fn approx_ge(&self, other: &Self, ulps: <Self as Ulps>::U) -> bool {
        match self.approx_cmp(other, ulps) {
            Ordering::Greater | Ordering::Equal => true,
            _ => false,
        }
    }
}

impl ApproxOrd for f32 {
    fn approx_cmp(&self, other: &f32, ulps: <Self as Ulps>::U) -> Ordering {

        // -0 and +0 are drastically far in ulps terms, so
        // we need a special case for that.
        if self==other { return Ordering::Equal; }

        // Handle differing signs as a special case, even if
        // they are very close, most people consider them
        // unequal.
        if *self>0_f32 && *other<0_f32 { return Ordering::Greater; }
        if *self<0_f32 && *other>0_f32 { return Ordering::Less }

        let diff: i32 = self.ulps(other);
        match diff {
            x if x > 0 && x <= ulps => Ordering::Equal,
            x if x > 0 => Ordering::Greater,
            x if x < 0 && x >= -ulps => Ordering::Equal,
            x if x < 0 => Ordering::Less,
            _ => Ordering::Equal
        }
    }
}

#[test]
fn f32_approx_cmp_test1() {
    let f: f32 = 0.1_f32;
    let mut sum: f32 = 0.0_f32;
    for _ in (0_isize..10_isize) { sum += f; }
    let product: f32 = f * 10.0_f32;
    assert!(sum != product); // Should not be directly equal:
    println!("Ulps Difference: {}",sum.ulps(&product));
    assert!(sum.approx_cmp(&product,1) == Ordering::Equal); // But should be close
    assert!(sum.approx_cmp(&product,0) != Ordering::Equal);
    assert!(product.approx_cmp(&sum,0) != Ordering::Equal);
}
#[test]
fn f32_approx_cmp_test2() {
    let x: f32 = 1000000_f32;
    let y: f32 = 1000000.1_f32;
    assert!(x != y); // Should not be directly equal
    println!("Ulps Difference: {}",x.ulps(&y));
    assert!(x.approx_cmp(&y,2) == Ordering::Equal);
    assert!(x.approx_cmp(&y,1) == Ordering::Less);
    assert!(y.approx_cmp(&x,1) == Ordering::Greater);
}

impl ApproxOrd for f64 {
    fn approx_cmp(&self, other: &f64, ulps: <Self as Ulps>::U) -> Ordering {

        // -0 and +0 are drastically far in ulps terms, so
        // we need a special case for that.
        if self==other { return Ordering::Equal; }

        // Handle differing signs as a special case, even if
        // they are very close, most people consider them
        // unequal.
        if *self>0_f64 && *other<0_f64 { return Ordering::Greater; }
        if *self<0_f64 && *other>0_f64 { return Ordering::Less }

        let diff: i64 = self.ulps(other);
        match diff {
            x if x > 0 && x <= ulps => Ordering::Equal,
            x if x > 0 => Ordering::Greater,
            x if x < 0 && x >= -ulps => Ordering::Equal,
            x if x < 0 => Ordering::Less,
            _ => Ordering::Equal
        }
    }
}

#[test]
fn f64_approx_cmp_test1() {
    let f: f64 = 0.000000001_f64;
    let mut sum: f64 = 0.0_f64;
    for _ in (0_isize..10_isize) { sum += f; }
    let product: f64 = f * 10.0_f64;
    assert!(sum != product); // Should not be directly equal:
    println!("Ulps Difference: {}",sum.ulps(&product));
    assert!(sum.approx_cmp(&product,1) == Ordering::Equal); // But should be close
    assert!(sum.approx_cmp(&product,0) != Ordering::Equal);
    assert!(product.approx_cmp(&sum,0) != Ordering::Equal);
}
#[test]
fn f64_approx_cmp_test2() {
    let x: f64 = 1000000_f64;
    let y: f64 = 1000000.0000000003_f64;
    assert!(x != y); // Should not be directly equal
    println!("Ulps Difference: {}",x.ulps(&y));
    assert!(x.approx_cmp(&y,3) == Ordering::Equal);
    assert!(x.approx_cmp(&y,2) == Ordering::Less);
    assert!(y.approx_cmp(&x,2) == Ordering::Greater);
}