1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
/*
 * Copyright 2018 Google Inc. All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

use std::marker::PhantomData;
use std::mem::size_of;
use std::ops::Deref;

use crate::endian_scalar::{emplace_scalar, read_scalar, read_scalar_at};
use crate::follow::Follow;
use crate::push::Push;

pub const FLATBUFFERS_MAX_BUFFER_SIZE: usize = (1u64 << 31) as usize;

pub const FILE_IDENTIFIER_LENGTH: usize = 4;

pub const VTABLE_METADATA_FIELDS: usize = 2;

pub const SIZE_U8: usize = size_of::<u8>();
pub const SIZE_I8: usize = size_of::<i8>();

pub const SIZE_U16: usize = size_of::<u16>();
pub const SIZE_I16: usize = size_of::<i16>();

pub const SIZE_U32: usize = size_of::<u32>();
pub const SIZE_I32: usize = size_of::<i32>();

pub const SIZE_U64: usize = size_of::<u64>();
pub const SIZE_I64: usize = size_of::<i64>();

pub const SIZE_F32: usize = size_of::<f32>();
pub const SIZE_F64: usize = size_of::<f64>();

pub const SIZE_SOFFSET: usize = SIZE_I32;
pub const SIZE_UOFFSET: usize = SIZE_U32;
pub const SIZE_VOFFSET: usize = SIZE_I16;

pub const SIZE_SIZEPREFIX: usize = SIZE_UOFFSET;

/// SOffsetT is a relative pointer from tables to their vtables.
pub type SOffsetT = i32;

/// UOffsetT is used represent both for relative pointers and lengths of vectors.
pub type UOffsetT = u32;

/// VOffsetT is a relative pointer in vtables to point from tables to field data.
pub type VOffsetT = u16;

/// TableFinishedWIPOffset marks a WIPOffset as being for a finished table.
#[derive(Clone, Copy)]
pub struct TableFinishedWIPOffset {}

/// TableUnfinishedWIPOffset marks a WIPOffset as being for an unfinished table.
#[derive(Clone, Copy)]
pub struct TableUnfinishedWIPOffset {}

/// UnionWIPOffset marks a WIPOffset as being for a union value.
#[derive(Clone, Copy)]
pub struct UnionWIPOffset {}

/// VTableWIPOffset marks a WIPOffset as being for a vtable.
#[derive(Clone, Copy)]
pub struct VTableWIPOffset {}

/// WIPOffset contains an UOffsetT with a special meaning: it is the location of
/// data relative to the *end* of an in-progress FlatBuffer. The
/// FlatBufferBuilder uses this to track the location of objects in an absolute
/// way. The impl of Push converts a WIPOffset into a ForwardsUOffset.
#[derive(Debug)]
pub struct WIPOffset<T>(UOffsetT, PhantomData<T>);

// We cannot use derive for these two impls, as the derived impls would only
// implement `Copy` and `Clone` for `T: Copy` and `T: Clone` respectively.
// However `WIPOffset<T>` can always be copied, no matter that `T` you
// have.
impl<T> Copy for WIPOffset<T> {}
impl<T> Clone for WIPOffset<T> {
    #[inline(always)]
    fn clone(&self) -> Self {
        *self
    }
}

impl<T> Eq for WIPOffset<T> {}

impl<T> PartialEq for WIPOffset<T> {
    fn eq(&self, o: &WIPOffset<T>) -> bool {
        self.value() == o.value()
    }
}

impl<T> Deref for WIPOffset<T> {
    type Target = UOffsetT;
    #[inline]
    fn deref(&self) -> &UOffsetT {
        &self.0
    }
}
impl<'a, T: 'a> WIPOffset<T> {
    /// Create a new WIPOffset.
    #[inline]
    pub fn new(o: UOffsetT) -> WIPOffset<T> {
        WIPOffset {
            0: o,
            1: PhantomData,
        }
    }

    /// Return a wrapped value that brings its meaning as a union WIPOffset
    /// into the type system.
    #[inline(always)]
    pub fn as_union_value(self) -> WIPOffset<UnionWIPOffset> {
        WIPOffset::new(self.0)
    }
    /// Get the underlying value.
    #[inline(always)]
    pub fn value(self) -> UOffsetT {
        self.0
    }
}

impl<T> Push for WIPOffset<T> {
    type Output = ForwardsUOffset<T>;

    #[inline(always)]
    fn push(&self, dst: &mut [u8], rest: &[u8]) {
        let n = (SIZE_UOFFSET + rest.len() - self.value() as usize) as UOffsetT;
        emplace_scalar::<UOffsetT>(dst, n);
    }
}

impl<T> Push for ForwardsUOffset<T> {
    type Output = Self;

    #[inline(always)]
    fn push(&self, dst: &mut [u8], rest: &[u8]) {
        self.value().push(dst, rest);
    }
}

/// ForwardsUOffset is used by Follow to traverse a FlatBuffer: the pointer
/// is incremented by the value contained in this type.
#[derive(Debug)]
pub struct ForwardsUOffset<T>(UOffsetT, PhantomData<T>);

// We cannot use derive for these two impls, as the derived impls would only
// implement `Copy` and `Clone` for `T: Copy` and `T: Clone` respectively.
// However `ForwardsUOffset<T>` can always be copied, no matter that `T` you
// have.
impl<T> Copy for ForwardsUOffset<T> {}
impl<T> Clone for ForwardsUOffset<T> {
    #[inline(always)]
    fn clone(&self) -> Self {
        *self
    }
}

impl<T> ForwardsUOffset<T> {
    #[inline(always)]
    pub fn value(self) -> UOffsetT {
        self.0
    }
}

impl<'a, T: Follow<'a>> Follow<'a> for ForwardsUOffset<T> {
    type Inner = T::Inner;
    #[inline(always)]
    fn follow(buf: &'a [u8], loc: usize) -> Self::Inner {
        let slice = &buf[loc..loc + SIZE_UOFFSET];
        let off = read_scalar::<u32>(slice) as usize;
        T::follow(buf, loc + off)
    }
}

/// ForwardsVOffset is used by Follow to traverse a FlatBuffer: the pointer
/// is incremented by the value contained in this type.
#[derive(Debug)]
pub struct ForwardsVOffset<T>(VOffsetT, PhantomData<T>);
impl<T> ForwardsVOffset<T> {
    #[inline(always)]
    pub fn value(&self) -> VOffsetT {
        self.0
    }
}

impl<'a, T: Follow<'a>> Follow<'a> for ForwardsVOffset<T> {
    type Inner = T::Inner;
    #[inline(always)]
    fn follow(buf: &'a [u8], loc: usize) -> Self::Inner {
        let slice = &buf[loc..loc + SIZE_VOFFSET];
        let off = read_scalar::<VOffsetT>(slice) as usize;
        T::follow(buf, loc + off)
    }
}

impl<T> Push for ForwardsVOffset<T> {
    type Output = Self;

    #[inline]
    fn push(&self, dst: &mut [u8], rest: &[u8]) {
        self.value().push(dst, rest);
    }
}

/// ForwardsSOffset is used by Follow to traverse a FlatBuffer: the pointer
/// is incremented by the *negative* of the value contained in this type.
#[derive(Debug)]
pub struct BackwardsSOffset<T>(SOffsetT, PhantomData<T>);
impl<T> BackwardsSOffset<T> {
    #[inline(always)]
    pub fn value(&self) -> SOffsetT {
        self.0
    }
}

impl<'a, T: Follow<'a>> Follow<'a> for BackwardsSOffset<T> {
    type Inner = T::Inner;
    #[inline(always)]
    fn follow(buf: &'a [u8], loc: usize) -> Self::Inner {
        let slice = &buf[loc..loc + SIZE_SOFFSET];
        let off = read_scalar::<SOffsetT>(slice);
        T::follow(buf, (loc as SOffsetT - off) as usize)
    }
}

impl<T> Push for BackwardsSOffset<T> {
    type Output = Self;

    #[inline]
    fn push(&self, dst: &mut [u8], rest: &[u8]) {
        self.value().push(dst, rest);
    }
}

/// SkipSizePrefix is used by Follow to traverse a FlatBuffer: the pointer is
/// incremented by a fixed constant in order to skip over the size prefix value.
pub struct SkipSizePrefix<T>(PhantomData<T>);
impl<'a, T: Follow<'a> + 'a> Follow<'a> for SkipSizePrefix<T> {
    type Inner = T::Inner;
    #[inline(always)]
    fn follow(buf: &'a [u8], loc: usize) -> Self::Inner {
        T::follow(buf, loc + SIZE_SIZEPREFIX)
    }
}

/// SkipRootOffset is used by Follow to traverse a FlatBuffer: the pointer is
/// incremented by a fixed constant in order to skip over the root offset value.
pub struct SkipRootOffset<T>(PhantomData<T>);
impl<'a, T: Follow<'a> + 'a> Follow<'a> for SkipRootOffset<T> {
    type Inner = T::Inner;
    #[inline(always)]
    fn follow(buf: &'a [u8], loc: usize) -> Self::Inner {
        T::follow(buf, loc + SIZE_UOFFSET)
    }
}

/// FileIdentifier is used by Follow to traverse a FlatBuffer: the pointer is
/// dereferenced into a byte slice, whose bytes are the file identifer value.
pub struct FileIdentifier;
impl<'a> Follow<'a> for FileIdentifier {
    type Inner = &'a [u8];
    #[inline(always)]
    fn follow(buf: &'a [u8], loc: usize) -> Self::Inner {
        &buf[loc..loc + FILE_IDENTIFIER_LENGTH]
    }
}

/// SkipFileIdentifier is used by Follow to traverse a FlatBuffer: the pointer
/// is incremented by a fixed constant in order to skip over the file
/// identifier value.
pub struct SkipFileIdentifier<T>(PhantomData<T>);
impl<'a, T: Follow<'a> + 'a> Follow<'a> for SkipFileIdentifier<T> {
    type Inner = T::Inner;
    #[inline(always)]
    fn follow(buf: &'a [u8], loc: usize) -> Self::Inner {
        T::follow(buf, loc + FILE_IDENTIFIER_LENGTH)
    }
}

impl<'a> Follow<'a> for bool {
    type Inner = bool;
    #[inline(always)]
    fn follow(buf: &'a [u8], loc: usize) -> Self::Inner {
        read_scalar_at::<u8>(buf, loc) != 0
    }
}

/// Follow trait impls for primitive types.
///
/// Ideally, these would be implemented as a single impl using trait bounds on
/// EndianScalar, but implementing Follow that way causes a conflict with
/// other impls.
macro_rules! impl_follow_for_endian_scalar {
    ($ty:ident) => {
        impl<'a> Follow<'a> for $ty {
            type Inner = $ty;
            #[inline(always)]
            fn follow(buf: &'a [u8], loc: usize) -> Self::Inner {
                read_scalar_at::<$ty>(buf, loc)
            }
        }
    };
}

impl_follow_for_endian_scalar!(u8);
impl_follow_for_endian_scalar!(u16);
impl_follow_for_endian_scalar!(u32);
impl_follow_for_endian_scalar!(u64);
impl_follow_for_endian_scalar!(i8);
impl_follow_for_endian_scalar!(i16);
impl_follow_for_endian_scalar!(i32);
impl_follow_for_endian_scalar!(i64);
impl_follow_for_endian_scalar!(f32);
impl_follow_for_endian_scalar!(f64);