1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
/*
 * Copyright 2018 Google Inc. All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

extern crate smallvec;

use std::cmp::max;
use std::marker::PhantomData;
use std::ptr::write_bytes;
use std::slice::from_raw_parts;

use endian_scalar::{read_scalar, emplace_scalar};
use primitives::*;
use push::{Push, PushAlignment};
use table::Table;
use vtable::{VTable, field_index_to_field_offset};
use vtable_writer::VTableWriter;
use vector::{SafeSliceAccess, Vector};

#[derive(Clone, Copy, Debug)]
struct FieldLoc {
    off: UOffsetT,
    id: VOffsetT,
}

/// FlatBufferBuilder builds a FlatBuffer through manipulating its internal
/// state. It has an owned `Vec<u8>` that grows as needed (up to the hardcoded
/// limit of 2GiB, which is set by the FlatBuffers format).
pub struct FlatBufferBuilder<'fbb> {
    owned_buf: Vec<u8>,
    head: usize,

    field_locs: Vec<FieldLoc>,
    written_vtable_revpos: Vec<UOffsetT>,

    nested: bool,
    finished: bool,

    min_align: usize,

    _phantom: PhantomData<&'fbb ()>,
}

impl<'fbb> FlatBufferBuilder<'fbb> {
    /// Create a FlatBufferBuilder that is ready for writing.
    pub fn new() -> Self {
        Self::new_with_capacity(0)
    }

    /// Create a FlatBufferBuilder that is ready for writing, with a
    /// ready-to-use capacity of the provided size.
    ///
    /// The maximum valid value is `FLATBUFFERS_MAX_BUFFER_SIZE`.
    pub fn new_with_capacity(size: usize) -> Self {
        // we need to check the size here because we create the backing buffer
        // directly, bypassing the typical way of using grow_owned_buf:
        assert!(size <= FLATBUFFERS_MAX_BUFFER_SIZE,
                "cannot initialize buffer bigger than 2 gigabytes");

        FlatBufferBuilder {
            owned_buf: vec![0u8; size],
            head: size,

            field_locs: Vec::new(),
            written_vtable_revpos: Vec::new(),

            nested: false,
            finished: false,

            min_align: 0,

            _phantom: PhantomData,
        }
    }

    /// Reset the FlatBufferBuilder internal state. Use this method after a
    /// call to a `finish` function in order to re-use a FlatBufferBuilder.
    ///
    /// This function is the only way to reset the `finished` state and start
    /// again.
    ///
    /// If you are using a FlatBufferBuilder repeatedly, make sure to use this
    /// function, because it re-uses the FlatBufferBuilder's existing
    /// heap-allocated `Vec<u8>` internal buffer. This offers significant speed
    /// improvements as compared to creating a new FlatBufferBuilder for every
    /// new object.
    pub fn reset(&mut self) {
        // memset only the part of the buffer that could be dirty:
        {
            let to_clear = self.owned_buf.len() - self.head;
            let ptr = (&mut self.owned_buf[self.head..]).as_mut_ptr();
            unsafe { write_bytes(ptr, 0, to_clear); }
        }

        self.head = self.owned_buf.len();
        self.written_vtable_revpos.clear();

        self.nested = false;
        self.finished = false;

        self.min_align = 0;
    }

    /// Destroy the FlatBufferBuilder, returning its internal byte vector
    /// and the index into it that represents the start of valid data.
    pub fn collapse(self) -> (Vec<u8>, usize) {
        (self.owned_buf, self.head)
    }

    /// Push a Push'able value onto the front of the in-progress data.
    ///
    /// This function uses traits to provide a unified API for writing
    /// scalars, tables, vectors, and WIPOffsets.
    #[inline]
    pub fn push<P: Push>(&mut self, x: P) -> WIPOffset<P::Output> {
        let sz = P::size();
        self.align(sz, P::alignment());
        self.make_space(sz);
        {
            let (dst, rest) = (&mut self.owned_buf[self.head..]).split_at_mut(sz);
            x.push(dst, rest);
        }
        WIPOffset::new(self.used_space() as UOffsetT)
    }

    /// Push a Push'able value onto the front of the in-progress data, and
    /// store a reference to it in the in-progress vtable. If the value matches
    /// the default, then this is a no-op.
    #[inline]
    pub fn push_slot<X: Push + PartialEq>(&mut self, slotoff: VOffsetT, x: X, default: X) {
        self.assert_nested("push_slot");
        if x == default {
            return;
        }
        self.push_slot_always(slotoff, x);
    }

    /// Push a Push'able value onto the front of the in-progress data, and
    /// store a reference to it in the in-progress vtable.
    #[inline]
    pub fn push_slot_always<X: Push>(&mut self, slotoff: VOffsetT, x: X) {
        self.assert_nested("push_slot_always");
        let off = self.push(x);
        self.track_field(slotoff, off.value());
    }

    /// Retrieve the number of vtables that have been serialized into the
    /// FlatBuffer. This is primarily used to check vtable deduplication.
    #[inline]
    pub fn num_written_vtables(&self) -> usize {
        self.written_vtable_revpos.len()
    }

    /// Start a Table write.
    ///
    /// Asserts that the builder is not in a nested state.
    ///
    /// Users probably want to use `push_slot` to add values after calling this.
    #[inline]
    pub fn start_table(&mut self) -> WIPOffset<TableUnfinishedWIPOffset> {
        self.assert_not_nested("start_table can not be called when a table or vector is under construction");
        self.nested = true;

        WIPOffset::new(self.used_space() as UOffsetT)
    }

    /// End a Table write.
    ///
    /// Asserts that the builder is in a nested state.
    #[inline]
    pub fn end_table(&mut self, off: WIPOffset<TableUnfinishedWIPOffset>) -> WIPOffset<TableFinishedWIPOffset> {
        self.assert_nested("end_table");

        let o = self.write_vtable(off);

        self.nested = false;
        self.field_locs.clear();

        WIPOffset::new(o.value())
    }

    /// Start a Vector write.
    ///
    /// Asserts that the builder is not in a nested state.
    ///
    /// Most users will prefer to call `create_vector`.
    /// Speed optimizing users who choose to create vectors manually using this
    /// function will want to use `push` to add values.
    #[inline]
    pub fn start_vector<T: Push>(&mut self, num_items: usize) {
        self.assert_not_nested("start_vector can not be called when a table or vector is under construction");
        self.nested = true;
        self.align(num_items * T::size(), T::alignment().max_of(SIZE_UOFFSET));
    }

    /// End a Vector write.
    ///
    /// Note that the `num_elems` parameter is the number of written items, not
    /// the byte count.
    ///
    /// Asserts that the builder is in a nested state.
    #[inline]
    pub fn end_vector<T: Push>(&mut self, num_elems: usize) -> WIPOffset<Vector<'fbb, T>> {
        self.assert_nested("end_vector");
        self.nested = false;
        let o = self.push::<UOffsetT>(num_elems as UOffsetT);
        WIPOffset::new(o.value())
    }

    /// Create a utf8 string.
    ///
    /// The wire format represents this as a zero-terminated byte vector.
    #[inline]
    pub fn create_string<'a: 'b, 'b>(&'a mut self, s: &'b str) -> WIPOffset<&'fbb str> {
        self.assert_not_nested("create_string can not be called when a table or vector is under construction");
        WIPOffset::new(self.create_byte_string(s.as_bytes()).value())
    }

    /// Create a zero-terminated byte vector.
    #[inline]
    pub fn create_byte_string(&mut self, data: &[u8]) -> WIPOffset<&'fbb [u8]> {
        self.assert_not_nested("create_byte_string can not be called when a table or vector is under construction");
        self.align(data.len() + 1, PushAlignment::new(SIZE_UOFFSET));
        self.push(0u8);
        self.push_bytes_unprefixed(data);
        self.push(data.len() as UOffsetT);
        WIPOffset::new(self.used_space() as UOffsetT)
    }

    /// Create a vector by memcpy'ing. This is much faster than calling
    /// `create_vector`, but the underlying type must be represented as
    /// little-endian on the host machine. This property is encoded in the
    /// type system through the SafeSliceAccess trait. The following types are
    /// always safe, on any platform: bool, u8, i8, and any
    /// FlatBuffers-generated struct.
    #[inline]
    pub fn create_vector_direct<'a: 'b, 'b, T: SafeSliceAccess + Push + Sized + 'b>(&'a mut self, items: &'b [T]) -> WIPOffset<Vector<'fbb, T>> {
        self.assert_not_nested("create_vector_direct can not be called when a table or vector is under construction");
        let elem_size = T::size();
        self.align(items.len() * elem_size, T::alignment().max_of(SIZE_UOFFSET));

        let bytes = {
            let ptr = items.as_ptr() as *const T as *const u8;
            unsafe { from_raw_parts(ptr, items.len() * elem_size) }
        };
        self.push_bytes_unprefixed(bytes);
        self.push(items.len() as UOffsetT);

        WIPOffset::new(self.used_space() as UOffsetT)
    }

    /// Create a vector of strings.
    ///
    /// Speed-sensitive users may wish to reduce memory usage by creating the
    /// vector manually: use `create_vector`, `push`, and `end_vector`.
    #[inline]
    pub fn create_vector_of_strings<'a, 'b>(&'a mut self, xs: &'b [&'b str]) -> WIPOffset<Vector<'fbb, ForwardsUOffset<&'fbb str>>> {
        self.assert_not_nested("create_vector_of_strings can not be called when a table or vector is under construction");
        // internally, smallvec can be a stack-allocated or heap-allocated vector.
        // we expect it to usually be stack-allocated.
        let mut offsets: smallvec::SmallVec<[WIPOffset<&str>; 0]> = smallvec::SmallVec::with_capacity(xs.len());
        unsafe { offsets.set_len(xs.len()); }
        for (i, &s) in xs.iter().enumerate().rev() {
            let o = self.create_string(s);
            offsets[i] = o;
        }
        self.create_vector(&offsets[..])
    }

    /// Create a vector of Push-able objects.
    ///
    /// Speed-sensitive users may wish to reduce memory usage by creating the
    /// vector manually: use `create_vector`, `push`, and `end_vector`.
    #[inline]
    pub fn create_vector<'a: 'b, 'b, T: Push + Copy + 'b>(&'a mut self, items: &'b [T]) -> WIPOffset<Vector<'fbb, T::Output>> {
        let elem_size = T::size();
        self.align(items.len() * elem_size, T::alignment().max_of(SIZE_UOFFSET));
        for i in (0..items.len()).rev() {
            self.push(items[i]);
        }
        WIPOffset::new(self.push::<UOffsetT>(items.len() as UOffsetT).value())
    }

    /// Get the byte slice for the data that has been written, regardless of
    /// whether it has been finished.
    #[inline]
    pub fn unfinished_data(&self) -> &[u8] {
        &self.owned_buf[self.head..]
    }
    /// Get the byte slice for the data that has been written after a call to
    /// one of the `finish` functions.
    #[inline]
    pub fn finished_data(&self) -> &[u8] {
        self.assert_finished("finished_bytes cannot be called when the buffer is not yet finished");
        &self.owned_buf[self.head..]
    }
    /// Assert that a field is present in the just-finished Table.
    ///
    /// This is somewhat low-level and is mostly used by the generated code.
    #[inline]
    pub fn required(&self,
                    tab_revloc: WIPOffset<TableFinishedWIPOffset>,
                    slot_byte_loc: VOffsetT,
                    assert_msg_name: &'static str) {
        let idx = self.used_space() - tab_revloc.value() as usize;
        let tab = Table::new(&self.owned_buf[self.head..], idx);
        let o = tab.vtable().get(slot_byte_loc) as usize;
        assert!(o != 0, "missing required field {}", assert_msg_name);
    }

    /// Finalize the FlatBuffer by: aligning it, pushing an optional file
    /// identifier on to it, pushing a size prefix on to it, and marking the
    /// internal state of the FlatBufferBuilder as `finished`. Afterwards,
    /// users can call `finished_data` to get the resulting data.
    #[inline]
    pub fn finish_size_prefixed<T>(&mut self, root: WIPOffset<T>, file_identifier: Option<&str>) {
        self.finish_with_opts(root, file_identifier, true);
    }

    /// Finalize the FlatBuffer by: aligning it, pushing an optional file
    /// identifier on to it, and marking the internal state of the
    /// FlatBufferBuilder as `finished`. Afterwards, users can call
    /// `finished_data` to get the resulting data.
    #[inline]
    pub fn finish<T>(&mut self, root: WIPOffset<T>, file_identifier: Option<&str>) {
        self.finish_with_opts(root, file_identifier, false);
    }

    /// Finalize the FlatBuffer by: aligning it and marking the internal state
    /// of the FlatBufferBuilder as `finished`. Afterwards, users can call
    /// `finished_data` to get the resulting data.
    #[inline]
    pub fn finish_minimal<T>(&mut self, root: WIPOffset<T>) {
        self.finish_with_opts(root, None, false);
    }

    #[inline]
    fn used_space(&self) -> usize {
        self.owned_buf.len() - self.head as usize
    }

    #[inline]
    fn track_field(&mut self, slot_off: VOffsetT, off: UOffsetT) {
        let fl = FieldLoc {
            id: slot_off,
            off: off,
        };
        self.field_locs.push(fl);
    }

    /// Write the VTable, if it is new.
    fn write_vtable(&mut self, table_tail_revloc: WIPOffset<TableUnfinishedWIPOffset>) -> WIPOffset<VTableWIPOffset> {
        self.assert_nested("write_vtable");

        // Write the vtable offset, which is the start of any Table.
        // We fill its value later.
        let object_revloc_to_vtable: WIPOffset<VTableWIPOffset> =
            WIPOffset::new(self.push::<UOffsetT>(0xF0F0F0F0 as UOffsetT).value());

        // Layout of the data this function will create when a new vtable is
        // needed.
        // --------------------------------------------------------------------
        // vtable starts here
        // | x, x -- vtable len (bytes) [u16]
        // | x, x -- object inline len (bytes) [u16]
        // | x, x -- zero, or num bytes from start of object to field #0   [u16]
        // | ...
        // | x, x -- zero, or num bytes from start of object to field #n-1 [u16]
        // vtable ends here
        // table starts here
        // | x, x, x, x -- offset (negative direction) to the vtable [i32]
        // |               aka "vtableoffset"
        // | -- table inline data begins here, we don't touch it --
        // table ends here -- aka "table_start"
        // --------------------------------------------------------------------
        //
        // Layout of the data this function will create when we re-use an
        // existing vtable.
        //
        // We always serialize this particular vtable, then compare it to the
        // other vtables we know about to see if there is a duplicate. If there
        // is, then we erase the serialized vtable we just made.
        // We serialize it first so that we are able to do byte-by-byte
        // comparisons with already-serialized vtables. This 1) saves
        // bookkeeping space (we only keep revlocs to existing vtables), 2)
        // allows us to convert to little-endian once, then do
        // fast memcmp comparisons, and 3) by ensuring we are comparing real
        // serialized vtables, we can be more assured that we are doing the
        // comparisons correctly.
        //
        // --------------------------------------------------------------------
        // table starts here
        // | x, x, x, x -- offset (negative direction) to an existing vtable [i32]
        // |               aka "vtableoffset"
        // | -- table inline data begins here, we don't touch it --
        // table starts here: aka "table_start"
        // --------------------------------------------------------------------

        // fill the WIP vtable with zeros:
        let vtable_byte_len = get_vtable_byte_len(&self.field_locs);
        self.make_space(vtable_byte_len);

        // compute the length of the table (not vtable!) in bytes:
        let table_object_size = object_revloc_to_vtable.value() - table_tail_revloc.value();
        debug_assert!(table_object_size < 0x10000); // vTable use 16bit offsets.

        // Write the VTable (we may delete it afterwards, if it is a duplicate):
        let vt_start_pos = self.head;
        let vt_end_pos = self.head + vtable_byte_len;
        {
            // write the vtable header:
            let vtfw = &mut VTableWriter::init(&mut self.owned_buf[vt_start_pos..vt_end_pos]);
            vtfw.write_vtable_byte_length(vtable_byte_len as VOffsetT);
            vtfw.write_object_inline_size(table_object_size as VOffsetT);

            // serialize every FieldLoc to the vtable:
            for &fl in self.field_locs.iter() {
                let pos: VOffsetT = (object_revloc_to_vtable.value() - fl.off) as VOffsetT;
                debug_assert_eq!(vtfw.get_field_offset(fl.id),
                                 0,
                                 "tried to write a vtable field multiple times");
                vtfw.write_field_offset(fl.id, pos);
            }
        }
        let dup_vt_use = {
            let this_vt = VTable::init(&self.owned_buf[..], self.head);
            self.find_duplicate_stored_vtable_revloc(this_vt)
        };

        let vt_use = match dup_vt_use {
            Some(n) => {
                VTableWriter::init(&mut self.owned_buf[vt_start_pos..vt_end_pos]).clear();
                self.head += vtable_byte_len;
                n
            }
            None => {
                let new_vt_use = self.used_space() as UOffsetT;
                self.written_vtable_revpos.push(new_vt_use);
                new_vt_use
            }
        };

        {
            let n = self.head + self.used_space() - object_revloc_to_vtable.value() as usize;
            let saw = read_scalar::<UOffsetT>(&self.owned_buf[n..n + SIZE_SOFFSET]);
            debug_assert_eq!(saw, 0xF0F0F0F0);
            emplace_scalar::<SOffsetT>(&mut self.owned_buf[n..n + SIZE_SOFFSET],
                                       vt_use as SOffsetT - object_revloc_to_vtable.value() as SOffsetT);
        }

        self.field_locs.clear();

        object_revloc_to_vtable
    }

    #[inline]
    fn find_duplicate_stored_vtable_revloc(&self, needle: VTable) -> Option<UOffsetT> {
        for &revloc in self.written_vtable_revpos.iter().rev() {
            let o = VTable::init(&self.owned_buf[..], self.head + self.used_space() - revloc as usize);
            if needle == o {
                return Some(revloc);
            }
        }
        None
    }

    // Only call this when you know it is safe to double the size of the buffer.
    #[inline]
    fn grow_owned_buf(&mut self) {
        let old_len = self.owned_buf.len();
        let new_len = max(1, old_len * 2);

        let starting_active_size = self.used_space();

        let diff = new_len - old_len;
        self.owned_buf.resize(new_len, 0);
        self.head += diff;

        let ending_active_size = self.used_space();
        debug_assert_eq!(starting_active_size, ending_active_size);

        if new_len == 1 {
            return;
        }

        // calculate the midpoint, and safely copy the old end data to the new
        // end position:
        let middle = new_len / 2;
        {
            let (left, right) = &mut self.owned_buf[..].split_at_mut(middle);
            right.copy_from_slice(left);
        }
        // finally, zero out the old end data.
        {
            let ptr = (&mut self.owned_buf[..middle]).as_mut_ptr();
            unsafe { write_bytes(ptr, 0, middle); }
        }
    }

    // with or without a size prefix changes how we load the data, so finish*
    // functions are split along those lines.
    fn finish_with_opts<T>(&mut self,
                           root: WIPOffset<T>,
                           file_identifier: Option<&str>,
                           size_prefixed: bool) {
        self.assert_not_finished("buffer cannot be finished when it is already finished");
        self.assert_not_nested("buffer cannot be finished when a table or vector is under construction");
        self.written_vtable_revpos.clear();

        let to_align = {
            // for the root offset:
            let a = SIZE_UOFFSET;
            // for the size prefix:
            let b = if size_prefixed { SIZE_UOFFSET } else { 0 };
            // for the file identifier (a string that is not zero-terminated):
            let c = if file_identifier.is_some() {
                FILE_IDENTIFIER_LENGTH
            } else {
                0
            };
            a + b + c
        };

        {
            let ma = PushAlignment::new(self.min_align);
            self.align(to_align, ma);
        }

        if let Some(ident) = file_identifier {
            debug_assert_eq!(ident.len(), FILE_IDENTIFIER_LENGTH);
            self.push_bytes_unprefixed(ident.as_bytes());
        }

        self.push(root);

        if size_prefixed {
            let sz = self.used_space() as UOffsetT;
            self.push::<UOffsetT>(sz);
        }
        self.finished = true;
    }

    #[inline]
    fn align(&mut self, len: usize, alignment: PushAlignment) {
        self.track_min_align(alignment.value());
        let s = self.used_space() as usize;
        self.make_space(padding_bytes(s + len, alignment.value()));
    }

    #[inline]
    fn track_min_align(&mut self, alignment: usize) {
        self.min_align = max(self.min_align, alignment);
    }

    #[inline]
    fn push_bytes_unprefixed(&mut self, x: &[u8]) -> UOffsetT {
        let n = self.make_space(x.len());
        &mut self.owned_buf[n..n + x.len()].copy_from_slice(x);

        n as UOffsetT
    }

    #[inline]
    fn make_space(&mut self, want: usize) -> usize {
        self.ensure_capacity(want);
        self.head -= want;
        self.head
    }

    #[inline]
    fn ensure_capacity(&mut self, want: usize) -> usize {
        if self.unused_ready_space() >= want {
            return want;
        }
        assert!(want <= FLATBUFFERS_MAX_BUFFER_SIZE,
                "cannot grow buffer beyond 2 gigabytes");

        while self.unused_ready_space() < want {
            self.grow_owned_buf();
        }
        want
    }
    #[inline]
    fn unused_ready_space(&self) -> usize {
        self.head
    }
    #[inline]
    fn assert_nested(&self, fn_name: &'static str) {
        // we don't assert that self.field_locs.len() >0 because the vtable
        // could be empty (e.g. for empty tables, or for all-default values).
        debug_assert!(self.nested, format!("incorrect FlatBufferBuilder usage: {} must be called while in a nested state", fn_name));
    }
    #[inline]
    fn assert_not_nested(&self, msg: &'static str) {
        debug_assert!(!self.nested, msg);
    }
    #[inline]
    fn assert_finished(&self, msg: &'static str) {
        debug_assert!(self.finished, msg);
    }
    #[inline]
    fn assert_not_finished(&self, msg: &'static str) {
        debug_assert!(!self.finished, msg);
    }

}

/// Compute the length of the vtable needed to represent the provided FieldLocs.
/// If there are no FieldLocs, then provide the minimum number of bytes
/// required: enough to write the VTable header.
#[inline]
fn get_vtable_byte_len(field_locs: &[FieldLoc]) -> usize {
    let max_voffset = field_locs.iter().map(|fl| fl.id).max();
    match max_voffset {
        None => { field_index_to_field_offset(0) as usize }
        Some(mv) => { mv as usize + SIZE_VOFFSET }
    }
}

#[inline]
fn padding_bytes(buf_size: usize, scalar_size: usize) -> usize {
    // ((!buf_size) + 1) & (scalar_size - 1)
    (!buf_size).wrapping_add(1) & (scalar_size.wrapping_sub(1))
}