1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
use crate::cell::{CellObject, GridCell};
use crate::storage::{SparseStorage, Storage};
use mint::Point2;
use slotmap::new_key_type;
use slotmap::SlotMap;

pub type GridObjects<O, Idx> = SlotMap<GridHandle, StoreObject<O, Idx>>;

new_key_type! {
    /// This handle is used to modify the associated object or to update its position.
    /// It is returned by the _insert_ method of a Grid.
    pub struct GridHandle;
}

/// State of an object, maintain() updates the internals of the grid and resets this to Unchanged
#[derive(Clone, Copy, PartialEq, Eq)]
pub enum ObjectState {
    Unchanged,
    NewPos,
    Relocate,
    Removed,
}

/// The actual object stored in the store
#[derive(Clone, Copy)]
pub struct StoreObject<O: Copy, Idx: Copy> {
    /// User-defined object to be associated with a value
    obj: O,
    pub state: ObjectState,
    pub pos: Point2<f32>,
    pub cell_id: Idx,
}

/// Grid is a point-based spatial partitioning structure that uses a generic storage of cells which acts as a
/// grid instead of a tree.
///
/// ## Fast queries
/// In theory, Grid should be faster than a quadtree/r-tree because it has no log costs
/// (calculating the cells around a point is trivial).  
/// However, it only works if the cell size is adapted to the problem, much like how a tree has to
/// be balanced to be efficient.  
///
/// ## Dynamicity
/// Grid's big advantage is that it is dynamic, supporting lazy positions updates
/// and object removal in constant time. Once objects are in, there is almost no allocation happening.
///
/// Compare that to most immutable spatial partitioning structures out there, which pretty much require
/// to rebuild the entire tree every time.
///
/// A SlotMap is used for objects managing, adding a level of indirection between points and objects.
/// SlotMap is used because removal doesn't alter handles given to the user, while still having constant time access.
/// However it requires O to be copy, but SlotMap's author stated that they were working on a similar
/// map where Copy isn't required.
///
/// ## About object managment
///
/// In theory, you don't have to use the object managment directly, you can make your custom
/// Handle -> Object map by specifying "`()`" to be the object type.
/// _(This can be useful if your object is not Copy)_
/// Since `()` is zero sized, it should probably optimize away a lot of the object managment code.
///
/// ```rust
/// use flat_spatial::Grid;
/// let mut g: Grid<()> = Grid::new(10);
/// let handle = g.insert([0.0, 0.0], ());
/// // Use handle however you want
/// ```
///
/// ## Examples
/// Here is a basic example that shows most of its capabilities:
/// ```rust
/// use flat_spatial::Grid;
///
/// let mut g: Grid<i32> = Grid::new(10); // Creates a new grid with a cell width of 10 with an integer as extra data
/// let a = g.insert([0.0, 0.0], 0); // Inserts a new element with data: 0
///
/// {
///     let mut before = g.query_around([0.0, 0.0], 5.0).map(|(id, _pos)| id); // Queries for objects around a given point
///     assert_eq!(before.next(), Some(a));
///     assert_eq!(g.get(a).unwrap().1, &0);
/// }
/// let b = g.insert([0.0, 0.0], 1); // Inserts a new element, assigning a new unique and stable handle, with data: 1
///
/// g.remove(a); // Removes a value using the handle given by `insert`
///              // This won't have an effect until g.maintain() is called
///
/// g.maintain(); // Maintains the grid, which applies all removals and position updates (not needed for insertions)
///
/// assert_eq!(g.handles().collect::<Vec<_>>(), vec![b]); // We check that the "a" object has been removed
///
/// let after: Vec<_> = g.query_around([0.0, 0.0], 5.0).map(|(id, _pos)| id).collect(); // And that b is query-able
/// assert_eq!(after, vec![b]);
///
/// assert_eq!(g.get(b).unwrap().1, &1); // We also check that b still has his data associated
/// assert_eq!(g.get(a), None); // But that a doesn't exist anymore
/// ```
#[derive(Clone)]
pub struct Grid<O: Copy, ST: Storage = SparseStorage> {
    storage: ST,
    objects: GridObjects<O, ST::Idx>,
    // Cache maintain vec to avoid allocating every time maintain is called
    to_relocate: Vec<CellObject>,
}

impl<ST: Storage, O: Copy> Grid<O, ST> {
    /// Creates an empty grid.   
    /// The cell size should be about the same magnitude as your queries size.
    pub fn new(cell_size: i32) -> Self {
        Self {
            storage: ST::new(cell_size),
            objects: SlotMap::with_key(),
            to_relocate: Default::default(),
        }
    }

    /// Creates an empty grid.   
    /// The cell size should be about the same magnitude as your queries size.
    pub fn with_storage(st: ST) -> Self {
        Self {
            storage: st,
            objects: SlotMap::with_key(),
            to_relocate: Default::default(),
        }
    }

    fn cell_mut<'a>(
        storage: &'a mut ST,
        objects: &mut GridObjects<O, ST::Idx>,
        pos: Point2<f32>,
    ) -> (ST::Idx, &'a mut GridCell) {
        storage.cell_mut(pos, move |storage| {
            storage.modify(move |cell| cell.objs.clear());

            for (handle, obj) in objects.iter_mut() {
                obj.cell_id = storage.cell_id(obj.pos);
                obj.state = ObjectState::Unchanged;
                storage
                    .cell_mut_unchecked(obj.cell_id)
                    .objs
                    .push((handle, obj.pos));
            }
        })
    }

    /// Inserts a new object with a position and an associated object
    /// Returns the unique and stable handle to be used with get_obj
    ///
    /// # Example
    /// ```rust
    /// use flat_spatial::Grid;
    /// let mut g: Grid<()> = Grid::new(10);
    /// let h = g.insert([5.0, 3.0], ());
    /// ```
    pub fn insert(&mut self, pos: impl Into<Point2<f32>>, obj: O) -> GridHandle {
        let pos = pos.into();

        let Self {
            storage, objects, ..
        } = self;

        let (cell_id, cell) = Self::cell_mut(storage, objects, pos);
        let handle = objects.insert(StoreObject {
            obj,
            state: ObjectState::Unchanged,
            pos,
            cell_id,
        });
        cell.objs.push((handle, pos));
        handle
    }

    /// Lazily sets the position of an object (if it is not marked for deletion).
    /// This won't be taken into account until maintain() is called.  
    ///
    /// # Example
    /// ```rust
    /// use flat_spatial::Grid;
    /// let mut g: Grid<()> = Grid::new(10);
    /// let h = g.insert([5.0, 3.0], ());
    /// g.set_position(h, [3.0, 3.0]);
    /// ```
    pub fn set_position(&mut self, handle: GridHandle, pos: impl Into<Point2<f32>>) {
        let pos = pos.into();

        let obj = self
            .objects
            .get_mut(handle)
            .expect("Object not in grid anymore");
        obj.pos = pos;
        if obj.state != ObjectState::Removed {
            let target_id = self.storage.cell_id(pos);

            obj.state = if target_id == obj.cell_id {
                ObjectState::NewPos
            } else {
                ObjectState::Relocate
            };
        }

        self.storage.cell_mut_unchecked(obj.cell_id).dirty = true;
    }

    /// Lazily removes an object from the grid.
    /// This won't be taken into account until maintain() is called.  
    ///
    /// # Example
    /// ```rust
    /// use flat_spatial::Grid;
    /// let mut g: Grid<()> = Grid::new(10);
    /// let h = g.insert([5.0, 3.0], ());
    /// g.remove(h);
    /// ```
    pub fn remove(&mut self, handle: GridHandle) {
        let st = self
            .objects
            .get_mut(handle)
            .expect("Object not in grid anymore");

        st.state = ObjectState::Removed;
        self.storage.cell_mut_unchecked(st.cell_id).dirty = true;
    }

    /// Maintains the world, updating all the positions (and moving them to corresponding cells)
    /// and removing necessary objects and empty cells.
    /// Runs in linear time O(N) where N is the number of objects.
    /// # Example
    /// ```rust
    /// use flat_spatial::Grid;
    /// let mut g: Grid<()> = Grid::new(10);
    /// let h = g.insert([5.0, 3.0], ());
    /// g.remove(h);
    ///
    /// assert!(g.get(h).is_some());
    /// g.maintain();
    /// assert!(g.get(h).is_none());
    /// ```
    pub fn maintain(&mut self) {
        let Self {
            storage,
            objects,
            to_relocate,
            ..
        } = self;

        storage.modify(|cell| cell.maintain(objects, to_relocate));

        for (handle, pos) in to_relocate.drain(..) {
            Self::cell_mut(storage, objects, pos)
                .1
                .objs
                .push((handle, pos));
        }
    }

    /// Iterate over all handles
    pub fn handles(&self) -> impl Iterator<Item = GridHandle> + '_ {
        self.objects.keys()
    }

    /// Returns a reference to the associated object and its position, using the handle.  
    ///
    /// # Example
    /// ```rust
    /// use flat_spatial::Grid;
    /// let mut g: Grid<i32> = Grid::new(10);
    /// let h = g.insert([5.0, 3.0], 42);
    /// assert_eq!(g.get(h), Some(([5.0, 3.0].into(), &42)));
    /// ```
    pub fn get(&self, id: GridHandle) -> Option<(Point2<f32>, &O)> {
        self.objects.get(id).map(|x| (x.pos, &x.obj))
    }

    /// Returns a mutable reference to the associated object and its position, using the handle.  
    ///
    /// # Example
    /// ```rust
    /// use flat_spatial::Grid;
    /// let mut g: Grid<i32> = Grid::new(10);
    /// let h = g.insert([5.0, 3.0], 42);
    /// *g.get_mut(h).unwrap().1 = 56;
    /// assert_eq!(g.get(h).unwrap().1, &56);
    /// ```    
    pub fn get_mut(&mut self, id: GridHandle) -> Option<(Point2<f32>, &mut O)> {
        self.objects.get_mut(id).map(|x| (x.pos, &mut x.obj))
    }

    /// The underlying storage
    pub fn storage(&self) -> &ST {
        &self.storage
    }

    /// Queries for all objects around a position within a certain radius.
    /// Try to keep the radius asked and the cell size of similar magnitude for better performance.
    ///
    /// # Example
    /// ```rust
    /// use flat_spatial::Grid;
    ///
    /// let mut g: Grid<()> = Grid::new(10);
    /// let a = g.insert([0.0, 0.0], ());
    ///
    /// let around: Vec<_> = g.query_around([2.0, 2.0], 5.0).map(|(id, _pos)| id).collect();
    ///
    /// assert_eq!(vec![a], around);
    /// ```
    pub fn query_around(
        &self,
        pos: impl Into<Point2<f32>>,
        radius: f32,
    ) -> impl Iterator<Item = CellObject> + '_ {
        let pos = pos.into();

        let ll = [pos.x - radius, pos.y - radius].into(); // lower left
        let ur = [pos.x + radius, pos.y + radius].into(); // upper right

        let radius2 = radius * radius;
        self.query_raw(ll, ur).filter(move |(_, pos_obj)| {
            let x = pos_obj.x - pos.x;
            let y = pos_obj.y - pos.y;
            x * x + y * y < radius2
        })
    }

    /// Queries for all objects in an aabb (aka a rect).
    /// Try to keep the rect's width/height of similar magnitudes to the cell size for better performance.
    ///
    /// # Example
    /// ```rust
    /// use flat_spatial::Grid;
    ///
    /// let mut g: Grid<()> = Grid::new(10);
    /// let a = g.insert([0.0, 0.0], ());
    ///
    /// let around: Vec<_> = g.query_aabb([-1.0, -1.0], [1.0, 1.0]).map(|(id, _pos)| id).collect();
    ///
    /// assert_eq!(vec![a], around);
    /// ```
    pub fn query_aabb(
        &self,
        aa: impl Into<Point2<f32>>,
        bb: impl Into<Point2<f32>>,
    ) -> impl Iterator<Item = CellObject> + '_ {
        let aa = aa.into();
        let bb = bb.into();

        let ll = [aa.x.min(bb.x), aa.y.min(bb.y)].into(); // lower left
        let ur = [aa.x.max(bb.x), aa.y.max(bb.y)].into(); // upper right

        self.query_raw(ll, ur).filter(move |(_, pos_obj)| {
            (ll.x..=ur.x).contains(&pos_obj.x) && (ll.y..=ur.y).contains(&pos_obj.y)
        })
    }

    /// Queries for all objects in the cells intersecting an axis-aligned rectangle defined by lower left (ll) and upper right (ur)
    /// Try to keep the rect's width/height of similar magnitudes to the cell size for better performance.
    ///
    /// # Example
    /// ```rust
    /// use flat_spatial::Grid;
    ///
    /// let mut g: Grid<()> = Grid::new(10);
    /// let a = g.insert([0.0, 0.0], ());
    /// let b = g.insert([5.0, 5.0], ());
    ///
    /// let around: Vec<_> = g.query_raw([-1.0, -1.0].into(), [1.0, 1.0].into()).map(|(id, _pos)| id).collect();
    ///
    /// assert_eq!(vec![a, b], around);
    /// ```
    pub fn query_raw(
        &self,
        ll: Point2<f32>,
        ur: Point2<f32>,
    ) -> impl Iterator<Item = CellObject> + '_ {
        let ll_id = self.storage.cell_id(ll);
        let ur_id = self.storage.cell_id(ur);

        self.storage
            .cell_range(ll_id, ur_id)
            .flat_map(move |id| self.storage.cell(id))
            .flat_map(|x| x.objs.iter().copied())
    }

    /// Allows to look directly at what's in a cell covering a specific position.
    ///
    /// # Example
    /// ```rust
    /// use flat_spatial::Grid;
    ///
    /// let mut g: Grid<()> = Grid::new(10);
    /// let a = g.insert([2.0, 2.0], ());
    ///
    /// let around = g.get_cell([1.0, 1.0]).collect::<Vec<_>>();
    ///
    /// assert_eq!(vec![(a, [2.0, 2.0].into())], around);
    /// ```
    pub fn get_cell(
        &mut self,
        pos: impl Into<mint::Point2<f32>>,
    ) -> impl Iterator<Item = CellObject> + '_ {
        self.storage
            .cell(self.storage.cell_id(pos.into()))
            .into_iter()
            .flat_map(|x| x.objs.iter().copied())
    }

    /// Returns the number of objects currently available
    /// (removals that were not confirmed with maintain() are still counted)
    pub fn len(&self) -> usize {
        self.objects.len()
    }

    /// Checks if the grid contains objects or not
    /// (removals that were not confirmed with maintain() are still counted)
    pub fn is_empty(&self) -> bool {
        self.objects.is_empty()
    }
}

#[cfg(test)]
mod tests {
    use super::Grid;

    #[test]
    fn test_small_query() {
        let mut g: Grid<()> = Grid::new(10);
        let a = g.insert([5.0, 0.0], ());
        let b = g.insert([11.0, 0.0], ());
        let c = g.insert([5.0, 8.0], ());

        let near: Vec<_> = g.query_around([6.0, 0.0], 2.0).map(|x| x.0).collect();
        assert_eq!(near, vec![a]);

        let mid: Vec<_> = g.query_around([8.0, 0.0], 4.0).map(|x| x.0).collect();
        assert!(mid.contains(&a));
        assert!(mid.contains(&b));

        let far: Vec<_> = g.query_around([6.0, 0.0], 10.0).map(|x| x.0).collect();
        assert!(far.contains(&a));
        assert!(far.contains(&b));
        assert!(far.contains(&c));
    }

    #[test]
    fn test_big_query_around() {
        let mut g: Grid<()> = Grid::new(10);

        for i in 0..100 {
            g.insert([i as f32, 0.0], ());
        }

        let q: Vec<_> = g.query_around([15.0, 0.0], 9.5).map(|x| x.0).collect();
        assert_eq!(q.len(), 19); // 1 middle, 8 left, 8 right
    }

    #[test]
    fn test_big_query_rect() {
        let mut g: Grid<()> = Grid::new(10);

        for i in 0..100 {
            g.insert([i as f32, 0.0], ());
        }

        let q: Vec<_> = g
            .query_aabb([5.5, 1.0], [15.5, -1.0])
            .map(|x| x.0)
            .collect();
        assert_eq!(q.len(), 10);
    }

    #[test]
    fn test_distance_test() {
        let mut g: Grid<()> = Grid::new(10);
        let a = g.insert([3.0, 4.0], ());

        let far: Vec<_> = g.query_around([0.0, 0.0], 5.1).map(|x| x.0).collect();
        assert_eq!(far, vec![a]);

        let near: Vec<_> = g.query_around([0.0, 0.0], 4.9).map(|x| x.0).collect();
        assert_eq!(near, vec![]);
    }

    #[test]
    fn test_change_position() {
        let mut g: Grid<()> = Grid::new(10);
        let a = g.insert([0.0, 0.0], ());

        let before: Vec<_> = g.query_around([0.0, 0.0], 5.0).map(|x| x.0).collect();
        assert_eq!(before, vec![a]);

        g.set_position(a, [30.0, 30.0]);
        g.maintain();

        let before: Vec<_> = g.query_around([0.0, 0.0], 5.0).map(|x| x.0).collect();
        assert_eq!(before, vec![]);

        let after: Vec<_> = g.query_around([30.0, 30.0], 5.0).map(|x| x.0).collect();
        assert_eq!(after, vec![a]);
    }

    #[test]
    fn test_remove() {
        let mut g: Grid<()> = Grid::new(10);
        let a = g.insert([0.0, 0.0], ());

        let before: Vec<_> = g.query_around([0.0, 0.0], 5.0).map(|x| x.0).collect();
        assert_eq!(before, vec![a]);

        g.remove(a);
        let b = g.insert([0.0, 0.0], ());
        g.maintain();

        assert_eq!(g.handles().collect::<Vec<_>>(), vec![b]);

        let after: Vec<_> = g.query_around([0.0, 0.0], 5.0).map(|x| x.0).collect();
        assert_eq!(after, vec![b]);
    }

    #[test]
    fn test_resize() {
        let mut g: Grid<()> = Grid::new(10);
        let a = g.insert([-1000.0, 0.0], ());

        let q: Vec<_> = g.query_around([-1000.0, 0.0], 5.0).map(|x| x.0).collect();
        assert_eq!(q, vec![a]);

        let b = g.insert([0.0, 1000.0], ());

        let q: Vec<_> = g.query_around([0.0, 1000.0], 5.0).map(|x| x.0).collect();
        assert_eq!(q, vec![b]);
    }
}

#[cfg(test)]
mod testssparse {
    use crate::SparseGrid;

    #[test]
    fn test_small_query() {
        let mut g: SparseGrid<()> = SparseGrid::new(10);
        let a = g.insert([5.0, 0.0], ());
        let b = g.insert([11.0, 0.0], ());
        let c = g.insert([5.0, 8.0], ());

        let near: Vec<_> = g.query_around([6.0, 0.0], 2.0).map(|x| x.0).collect();
        assert_eq!(near, vec![a]);

        let mid: Vec<_> = g.query_around([8.0, 0.0], 4.0).map(|x| x.0).collect();
        assert!(mid.contains(&a));
        assert!(mid.contains(&b));

        let far: Vec<_> = g.query_around([6.0, 0.0], 10.0).map(|x| x.0).collect();
        assert!(far.contains(&a));
        assert!(far.contains(&b));
        assert!(far.contains(&c));
    }

    #[test]
    fn test_big_query_around() {
        let mut g: SparseGrid<()> = SparseGrid::new(10);

        for i in 0..100 {
            g.insert([i as f32, 0.0], ());
        }

        let q: Vec<_> = g.query_around([15.0, 0.0], 9.5).map(|x| x.0).collect();
        assert_eq!(q.len(), 19); // 1 middle, 8 left, 8 right
    }

    #[test]
    fn test_big_query_rect() {
        let mut g: SparseGrid<()> = SparseGrid::new(10);

        for i in 0..100 {
            g.insert([i as f32, 0.0], ());
        }

        let q: Vec<_> = g
            .query_aabb([5.5, 1.0], [15.5, -1.0])
            .map(|x| x.0)
            .collect();
        assert_eq!(q.len(), 10);
    }

    #[test]
    fn test_distance_test() {
        let mut g: SparseGrid<()> = SparseGrid::new(10);
        let a = g.insert([3.0, 4.0], ());

        let far: Vec<_> = g.query_around([0.0, 0.0], 5.1).map(|x| x.0).collect();
        assert_eq!(far, vec![a]);

        let near: Vec<_> = g.query_around([0.0, 0.0], 4.9).map(|x| x.0).collect();
        assert_eq!(near, vec![]);
    }

    #[test]
    fn test_change_position() {
        let mut g: SparseGrid<()> = SparseGrid::new(10);
        let a = g.insert([0.0, 0.0], ());

        let before: Vec<_> = g.query_around([0.0, 0.0], 5.0).map(|x| x.0).collect();
        assert_eq!(before, vec![a]);

        g.set_position(a, [30.0, 30.0]);
        g.maintain();

        let before: Vec<_> = g.query_around([0.0, 0.0], 5.0).map(|x| x.0).collect();
        assert_eq!(before, vec![]);

        let after: Vec<_> = g.query_around([30.0, 30.0], 5.0).map(|x| x.0).collect();
        assert_eq!(after, vec![a]);
    }

    #[test]
    fn test_remove() {
        let mut g: SparseGrid<()> = SparseGrid::new(10);
        let a = g.insert([0.0, 0.0], ());

        let before: Vec<_> = g.query_around([0.0, 0.0], 5.0).map(|x| x.0).collect();
        assert_eq!(before, vec![a]);

        g.remove(a);
        let b = g.insert([0.0, 0.0], ());
        g.maintain();

        assert_eq!(g.handles().collect::<Vec<_>>(), vec![b]);

        let after: Vec<_> = g.query_around([0.0, 0.0], 5.0).map(|x| x.0).collect();
        assert_eq!(after, vec![b]);
    }

    #[test]
    fn test_resize() {
        let mut g: SparseGrid<()> = SparseGrid::new(10);
        let a = g.insert([-1000.0, 0.0], ());

        let q: Vec<_> = g.query_around([-1000.0, 0.0], 5.0).map(|x| x.0).collect();
        assert_eq!(q, vec![a]);

        let b = g.insert([0.0, 1000.0], ());

        let q: Vec<_> = g.query_around([0.0, 1000.0], 5.0).map(|x| x.0).collect();
        assert_eq!(q, vec![b]);
    }
}