1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
use std::f64::consts::{PI, TAU};

// One gon in radians
const GON_RAD: f64 = PI / 200.;

/// An angle
#[derive(Copy, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Angle {
    /// The value of the angle in radians
    rad: f64,
}

impl Angle {
    /// Create a new angle specified in radians
    pub fn from_rad(rad: f64) -> Self {
        Self { rad }
    }
    /// Create a new angle specified in degrees
    pub fn from_deg(deg: f64) -> Self {
        Self::from_rad(deg.to_radians())
    }
    /// Create a new angle specified in [revolutions](https://en.wikipedia.org/wiki/Turn_(angle))
    pub fn from_rev(rev: f64) -> Self {
        Self::from_rad(rev * TAU)
    }
    /// Create a new angle specified in [gon](https://en.wikipedia.org/wiki/Gradian)
    pub fn from_gon(gon: f64) -> Self {
        Self::from_rad(gon * GON_RAD)
    }
    /// Retrieve value of angle as radians
    pub fn rad(&self) -> f64 {
        self.rad
    }
    /// Retrieve value of angle as degrees
    pub fn deg(&self) -> f64 {
        self.rad.to_degrees()
    }
    /// Retrieve value of angle as [revolutions](https://en.wikipedia.org/wiki/Turn_(angle))
    pub fn rev(&self) -> f64 {
        self.rad / TAU
    }
    /// Retrieve value of angle as [gon](https://en.wikipedia.org/wiki/Gradian)
    pub fn gon(&self) -> f64 {
        self.rad / GON_RAD
    }

    /// Returns this angle normalized to the range [0, 2pi) radians
    pub fn normalized(&self) -> Self {
        Self {
            rad: Self::wrap(self.rad),
        }
    }

    // ensures that the angle is always 0 <= a < 2*pi
    fn wrap(rad: f64) -> f64 {
        let modulo = rad % TAU;
        if modulo < 0. {
            TAU + modulo
        } else {
            modulo
        }
    }
}

impl std::ops::Add for Angle {
    type Output = Self;
    fn add(self, rhs: Self) -> Self::Output {
        Self::from_rad(self.rad + rhs.rad)
    }
}

impl std::ops::AddAssign for Angle {
    fn add_assign(&mut self, rhs: Self) {
        self.rad += rhs.rad;
    }
}

impl std::ops::Sub for Angle {
    type Output = Self;
    fn sub(self, rhs: Self) -> Self::Output {
        Self::from_rad(self.rad - rhs.rad)
    }
}

impl std::ops::SubAssign for Angle {
    fn sub_assign(&mut self, rhs: Self) {
        self.rad -= rhs.rad;
    }
}

impl std::ops::Mul<f64> for Angle {
    type Output = Self;
    fn mul(self, rhs: f64) -> Self::Output {
        Self::from_rad(self.rad * rhs)
    }
}

impl std::ops::Mul<Angle> for f64 {
    type Output = Angle;
    fn mul(self, rhs: Angle) -> Self::Output {
        rhs * self
    }
}

impl std::ops::MulAssign<f64> for Angle {
    fn mul_assign(&mut self, rhs: f64) {
        self.rad *= rhs;
    }
}

impl std::ops::Div<f64> for Angle {
    type Output = Self;
    fn div(self, rhs: f64) -> Self::Output {
        Self::from_rad(self.rad / rhs)
    }
}

impl std::ops::DivAssign<f64> for Angle {
    fn div_assign(&mut self, rhs: f64) {
        self.rad /= rhs;
    }
}

impl std::ops::Div for Angle {
    type Output = f64;
    fn div(self, rhs: Self) -> Self::Output {
        self.rad / rhs.rad
    }
}