1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
#![allow(clippy::assign_op_pattern)]

pub mod bool;
pub mod bytes;
pub mod number;
pub mod prelude;
#[deny(missing_docs)]
mod rng;
pub mod serialized_bytes;
pub mod string;
pub mod unit;
pub use paste;

pub use rng::rng;

/// the Fixturator is the struct that we wrap in our FooFixturator newtypes to impl Iterator over
/// each combination of Item and Curve needs its own Iterator implementation for Fixturator
/// Item is the Foo type of FooFixturator, i.e. the type of thing we are generating examples of
/// Curve represents some algorithm capable of generating fixtures
/// the Item is PhantomData because it simply represents a type to output
/// the Curve must be provided when the Fixturator is constructed to allow for paramaterized curves
/// this is most easily handled in most cases with the fixturator! and newtype_fixturator! macros
///
/// The inner index is always a single usize.
/// It can be ignored, e.g. in the case of Unpredictable implementations based on `rand::random()`.
/// If it is used it should be incremented by 1 and/or wrapped back to 0 to derive returned values.
/// Ideally the Curve should allow for efficient calculation of a fixture from any given index,
/// e.g. a fibbonacci curve would be a bad idea as it requires sequential/recursive calculations to
/// reach any specific index, c.f. the direct multiplication in the step function above.
/// Following this standard allows for wrapper structs to delegate their curves to the curves of
/// their inner types by constructing an inner Fixturator directly with the outer index passed in.
/// If we can always assume the inner fixturators can be efficiently constructed at any index this
/// allows us to efficiently compose fixturators.
/// See [ `newtype_fixturator!` ](newtype_fixturator) macro defined below for an example of this.
///
/// Fixturator implements Clone for convenience but note that this will clone the current index.
///
/// Fixturators are lazy and infinite, they must never fail to iterate
/// That is to say, calling fixturator.next().unwrap() must be safe to do and never panic
/// This makes the external interface as easy to compose as possible when building up Fixturators
/// over complex data types that include different curves with various periods.
/// For example, the Predictable bool sequence cycles between true/false with period of 2 while the
/// Predictable string sequence has 10 sample strings that it iterates over. We want to be able to
/// easily support Fixturators over structs containing both string and bool fields, so we wrap the
/// inner Fixturator sequences to keep producing bools and Strings for as needed (rather than
/// forcing the outer struct to stop after 2 bools or manually implement ad-hoc wrapping).
/// Wrapping logic may be subtle, e.g. mapping between a usize index and a u8 Item where the max
/// values do not align, so it is best to centralise the wrapping behaviour inside the Iterator
/// implementations for each <Item, Curve> combination.
/// If you are implementing an iteration over some finite sequence then wrap the iteration back to
/// the start of the sequence once the index exceeds the sequence's bounds or reset the index to 0
/// after seq.len() iterations.
/// essentially, the iteration of a fixturator should work like some_iter.cycle()
pub struct Fixturator<Item, Curve> {
    item: std::marker::PhantomData<Item>,
    pub curve: Curve,
    pub index: usize,
}

impl<Curve, Item> Fixturator<Item, Curve> {
    /// constructs a Fixturator of type <Item, Curve> from a Curve and starting index
    /// raw calls are a little verbose, e.g. `Fixturator::<u32, Predictable>::new(Predictable, 0)`
    /// the starting index is exposed to facilitate wrapper structs to delegate their indexes to
    /// internal Fixturators
    /// See [`newtype_fixturator!`](newtype_fixturator) macro below for an example of this
    pub fn new(curve: Curve, start: usize) -> Self {
        Fixturator::<Item, Curve> {
            curve,
            index: start,
            item: std::marker::PhantomData,
        }
    }
}

// /// set of basic tests that can be used to test any FooFixturator implementation
// /// usage:
// /// - type: the Foo of FooFixturator to be tested
// /// - empty_expected: vector of any length of empties that we predict from Empty
// /// - predictable_expected: vector of any length (can wrap) that we predict from Predictable
// /// - test_unpredictable (optional): whether to try and test the unpredictable case
// /// See the tests in modules in this crate
#[macro_export]
macro_rules! basic_test {
    ( $type:ty, $empty_expected:expr, $predictable_expected:expr ) => {
        basic_test!($type, $empty_expected, $predictable_expected, true);
    };
    ( $type:ty, $empty_expected:expr, $predictable_expected:expr, $test_unpredictable:literal ) => {
        $crate::prelude::paste! {
            #[test]
            #[cfg(test)]
            fn [<$type:lower _empty>] () {
                let empties = [<$type:camel Fixturator>]::new(Empty);
                // we can make many empties from the Empty curve
                assert_eq!(
                    $empty_expected,
                    empties.take($empty_expected.len()).collect::<Vec<$type>>(),
                );
            }
        }

        $crate::prelude::paste! {
            #[test]
            #[cfg(test)]
            fn [<$type:lower _predictable>] () {
                let predictables = [<$type:camel Fixturator>]::new($crate::prelude::Predictable);
                // we can predict some vector of values from the Predictable curve
                assert_eq!(
                    $predictable_expected,
                    predictables.take($predictable_expected.len()).collect::<Vec<$type>>(),
                );
            }
        }

        $crate::prelude::paste! {
            #[test]
            #[cfg(test)]
            fn [<$type:lower _unpredictable>] () {
                if $test_unpredictable {
                    let empties = [<$type:camel Fixturator>]::new(Empty);
                    let unpredictables = [<$type:camel Fixturator>]::new($crate::prelude::Unpredictable);

                    // the Unpredictable curve is not Empty
                    assert_ne!(
                        empties.take(100).collect::<Vec<$type>>(),
                        unpredictables.take(100).collect::<Vec<$type>>(),
                    );

                    let predictables = [<$type:camel Fixturator>]::new($crate::prelude::Predictable);
                    let unpredictables = [<$type:camel Fixturator>]::new($crate::prelude::Unpredictable);

                    // the Unpredictable curve is not Predictable
                    assert_ne!(
                        predictables.take(100).collect::<Vec<$type>>(),
                        unpredictables.take(100).collect::<Vec<$type>>(),
                    );
                }
            }
        }
    };
}

/// implements a FooFixturator for any type Foo
/// this simply wraps `Fixturator<Foo, Curve>` up as `FooFixturator<Curve>`
///
/// this macro serves a few purposes:
/// - we avoid the orphan rule that would prevent us implementing Iterator on Fixturator directly
/// - we avoid the verbosity of type and impl juggling around every new FooFixturator
/// - we create a FooFixturator implementation that is compatible with basic_test! macro
/// - we cover all three basic curves
/// - we standardiize the new() and new_indexed() methods without relying on traits
///
/// the expressions passed into the macro are the body of the next calls for Empty, Unpredictable
/// and Predictable, in order
#[macro_export]
macro_rules! fixturator {
    (
        with_vec $min:literal $max:literal;
        $type:tt;
        $($munch:tt)*
    ) => {
        $crate::prelude::paste! {
            pub type [<$type:camel Vec>] = Vec<$type>;
            fixturator!(
                [<$type:camel Vec>];
                curve Empty vec![];
                curve Unpredictable {
                    let mut index = get_fixt_index!();
                    let mut rng = $crate::rng();
                    let len = rng.gen_range($min..$max);
                    let mut fixturator = [<$type:camel Fixturator>]::new_indexed($crate::prelude::Unpredictable, index);
                    let mut v = vec![];
                    for _ in 0..len {
                        v.push(fixturator.next().unwrap());
                    }
                    index += 1;
                    set_fixt_index!(index);
                    v
                };
                curve Predictable {
                    let mut index = get_fixt_index!();
                    let mut fixturator = [<$type:camel Fixturator>]::new_indexed($crate::prelude::Predictable, index);
                    let mut v = vec![];
                    let min = $min;
                    let max = (index % ($max - min)) + min;
                    for _ in min..max {
                        v.push(fixturator.next().unwrap());
                    }
                    index += 1;
                    set_fixt_index!(index);
                    v
                };
            );
        }
        fixturator!($type; $($munch)*);
    };

    // for an enum Foo with variants with a single inner type
    //
    // fixturator!(Foo; variants [ A(String) B(bool) ];);
    //
    // implements all basic curves using fixturators for the variant inner types
    (
        $type:tt;
        variants [ $( $variant:tt($variant_inner:ty) )* ];
        $($munch:tt)*
    ) => {

        fixturator!(
            $type;
            enum [ $( $variant )* ];

            curve Empty $crate::prelude::paste! { match [<$type:camel Variant>]::random() {
                $(
                    [<$type:camel Variant>]::$variant => $type::$variant(
                        [<$variant_inner:camel Fixturator>]::new_indexed($crate::prelude::Empty, get_fixt_index!()).next().unwrap().into()
                    ),
                )*
            }};

            curve Unpredictable $crate::prelude::paste! { match [<$type:camel Variant>]::random() {
                $(
                    [<$type:camel Variant>]::$variant => $type::$variant(
                        [<$variant_inner:camel Fixturator>]::new_indexed($crate::prelude::Unpredictable, get_fixt_index!()).next().unwrap().into()
                    ),
                )*
            }};

            curve Predictable $crate::prelude::paste! { match [<$type:camel Variant>]::nth(get_fixt_index!()) {
                $(
                    [<$type:camel Variant>]::$variant => $type::$variant(
                        [<$variant_inner:camel Fixturator>]::new_indexed($crate::prelude::Predictable, get_fixt_index!()).next().unwrap().into()
                    ),
                )*
            }};

            $($munch)*
        );
    };

    // for an enum Foo with unit variants with no inner types
    //
    // fixturator!(Foo; unit variants [ A B ] empty B;);
    //
    // implements all basic curves returning the empty curve passed to the macro, or a random
    // variant or an iterating variant from the index
    (
        $type:tt;
        unit variants [ $( $variant:tt )* ] empty $empty:tt;
        $($munch:tt)*
    ) => {
        fixturator!(
            $type;
            enum [ $( $variant )* ];
            curve Empty {
                $crate::prelude::paste! { $type::$empty }
            };
            curve Unpredictable $crate::prelude::paste! { match [<$type:camel Variant>]::random() {
                $(
                        [<$type:camel Variant>]::$variant => $type::$variant,
                )*
            }};
            curve Predictable $crate::prelude::paste! {{
                match [<$type:camel Variant>]::nth(get_fixt_index!()) {
                $(
                    [<$type:camel Variant>]::$variant => $type::$variant,
                )*
            }}};
            $($munch)*
        );
    };

    // for any complex enum
    //
    // fixturator!(Foo; enum [ A B ]; curve ...; curve ...; curve ...;);
    //
    // implements an enum with variants matching Foo as FooVariant
    // this enum can be iterated over as per the strum crate EnumIter
    //
    // it also has convenience methods to match against:
    //
    // - FooVariant::random() for a random variant of Foo
    // - FooVariant::nth(n) for an indexed variant of Foo
    //
    // See the tests in this file for examples.
        (
            $type:tt;
            enum [ $( $variant:tt )* ];
            $($munch:tt)*
        ) => {
            $crate::prelude::paste! {
                #[derive($crate::prelude::strum_macros::EnumIter)]
                enum [<$type:camel Variant>] {
                    $( $variant ),*
                }

                impl [<$type:camel Variant>] {
                    fn random() -> Self {
                        [<$type:camel Variant>]::iter().choose(&mut $crate::rng()).unwrap()
                    }
                    fn nth(index: usize) -> Self {
                        $crate::prelude::paste! {
                            [<$type:camel Variant>]::iter().cycle().nth(index).unwrap()
                        }
                    }
                }
            }

            fixturator!($type; $($munch)* );
    };

    // for any Foo that impl From<Bar>
    //
    // fixturator!(Foo; from Bar;);
    //
    // implements all the curves by building Foo from a BarFixturator
    ( $type:ident; from $from:ty; $($munch:tt)* ) => {
        fixturator!(
            $type;

            curve Empty {
                $type::from(
                    $crate::prelude::paste! {
                        [< $from:camel Fixturator >]::new_indexed($crate::prelude::Empty, get_fixt_index!()).next().unwrap()
                    }
                )
            };
            curve Unpredictable {
                $type::from(
                    $crate::prelude::paste! {
                        [< $from:camel Fixturator >]::new_indexed($crate::prelude::Unpredictable, get_fixt_index!()).next().unwrap()
                    }
                )
            };
            curve Predictable {
                $type::from(
                    $crate::prelude::paste! {
                        [< $from:camel Fixturator >]::new_indexed($crate::prelude::Predictable, get_fixt_index!()).next().unwrap()
                    }
                )
            };
        );
    };

    // for any Foo that has a constructor function like Foo::new( ... )
    //
    // fixturator!(Foo; constructor fn new(String, String, bool););
    //
    // implements all curves by building all the arguments to the named constructor function from
    // the fixturators of the types specified to the macro
    ( $type:ident; constructor fn $fn:tt( $( $newtype:ty ),* ); $($munch:tt)* ) => {
        fixturator!(
            $type;

            curve Empty {
                let index = get_fixt_index!();
                $type::$fn(
                    $(
                        $crate::prelude::paste! {
                            [< $newtype:camel Fixturator >]::new_indexed($crate::prelude::Empty, index).next().unwrap().into()
                        }
                    ),*
                )
            };

            curve Unpredictable {
                let index = get_fixt_index!();
                $type::$fn(
                    $(
                        $crate::prelude::paste! {
                            [< $newtype:camel Fixturator >]::new_indexed($crate::prelude::Unpredictable, index).next().unwrap().into()
                        }
                    ),*
                )
            };
            curve Predictable {
                let index = get_fixt_index!();
                $type::$fn(
                    $(
                        $crate::prelude::paste! {
                            [< $newtype:camel Fixturator >]::new_indexed($crate::prelude::Predictable, index).next().unwrap().into()
                        }
                    ),*
                )
            };

            $($munch)*
        );
    };

    // for any Foo that has a vanilla function like fn make_foo( ... ) -> Foo
    //
    // fixturator!(Foo; vanilla fn make_foo(String, String, bool););
    //
    // implements all curves by building all the arguments to the named vanilla function from
    // the fixturators of the types specified to the macro
    ( $type:ident; vanilla fn $fn:tt( $( $newtype:ty ),* ); $($munch:tt)* ) => {
        fixturator!(
            $type;

            curve Empty {
                $fn(
                    $(
                        $crate::prelude::paste! {
                            [< $newtype:camel Fixturator >]::new_indexed($crate::prelude::Empty, get_fixt_index!()).next().unwrap().into()
                        }
                    ),*
                )
            };

            curve Unpredictable {
                $fn(
                    $(
                        $crate::prelude::paste! {
                            [< $newtype:camel Fixturator >]::new_indexed($crate::prelude::Unpredictable, get_fixt_index!()).next().unwrap().into()
                        }
                    ),*
                )
            };
            curve Predictable {
                $fn(
                    $(
                        $crate::prelude::paste! {
                            [< $newtype:camel Fixturator >]::new_indexed($crate::prelude::Predictable, get_fixt_index!()).next().unwrap().into()
                        }
                    ),*
                )
            };

            $($munch)*
        );
    };

    // implement a single curve for Foo
    //
    // fixturator!(Foo; curve MyCurve { ... };);
    //
    // uses TT munching for multiple curves
    // used internally by this macro for all baseline curves
    // See https://danielkeep.github.io/tlborm/book/pat-incremental-tt-munchers.html
    ( $type:ident; curve $curve:ident $e:expr; $($munch:tt)* ) => {
        curve!( $type, $curve, $e);

        fixturator!( $type; $($munch)* );
    };

    // create a FooFixturator for Foo
    //
    // fixturator!(Foo;);
    //
    // simply creates a newtype around the standard Fixturator struct and implements two methods:
    // - FooFixturator::new(curve) to construct a FooFixturator with curve at index 0
    // - FooFixturator::new(curve, index) to construct a FooFixturator with curve at index
    //
    // intended to be the TT munch endpoint for all patterns in this macro
    // See https://danielkeep.github.io/tlborm/book/pat-incremental-tt-munchers.html
    ( $type:ident; $($munch:tt)* ) => {
        $crate::prelude::paste! {
            #[allow(missing_docs)]
            pub struct [<$type:camel Fixturator>]<Curve>(Fixturator<$type, Curve>);

            #[allow(missing_docs)]
            impl <Curve>[<$type:camel Fixturator>]<Curve> {
                pub fn new(curve: Curve) -> [<$type:camel Fixturator>]<Curve> {
                    Self::new_indexed(curve, 0)
                }
                pub fn new_indexed(curve: Curve, start: usize) -> [<$type:camel Fixturator>]<Curve> {
                    [<$type:camel Fixturator>](Fixturator::<$type, Curve>::new(curve, start))
                }
            }
        }
    };

    // legacy syntax
    //
    // fixturator!(Foo, { /* empty */ }, { /* unpredictable */ }, { /* predictable */ });
    //
    // implements both FooFixturator and all the curves from raw expressions passed to the macro
    //
    // this syntax has several limitations:
    // - positional curve definitions are easy to accidentally mix up
    // - couples all curve definitions together and to FooFixturator creation
    // - undifferentiated logic forces much boilerplate because the macro knows nothing about Foo
    // - forces devs to define curves that might not be needed or make sense yet
    ( $type:ident, $empty:expr, $unpredictable:expr, $predictable:expr ) => {
        fixturator!(
            $type;
            curve Empty $empty;
            curve Unpredictable $unpredictable;
            curve Predictable $predictable;
        );
    };
}

#[macro_export]
macro_rules! get_fixt_index {
    () => {{
        let mut index = 0;
        FIXT_INDEX.with(|f| index = *f.borrow());
        index
    }};
}

#[macro_export]
macro_rules! set_fixt_index {
    ($index:expr) => {{
        FIXT_INDEX.with(|f| *f.borrow_mut() = $index);
    }};
}

#[macro_export]
macro_rules! get_fixt_curve {
    () => {{
        let mut curve = None;
        FIXT_CURVE.with(|f| curve = f.borrow().clone());
        curve.unwrap()
    }};
}

#[macro_export]
/// implement Iterator for a FooFixturator for a given curve
///
/// curve!(Foo, Unpredictable, /* make an Unpredictable Foo here */ );
///
/// simple wrapper around the standard Iterator trait from rust
/// the expression in the third parameter to curve! is just the body of .next() without the need or
/// ability to return an Option - i.e. return a value of type Foo _not_ `Option<Foo>`
/// if the body of the expression changes the index it will be respected, if not then it will be
/// incremented by 1 automatically by the macro
macro_rules! curve {
    ( $type:ident, $curve:ident, $e:expr ) => {
        $crate::prelude::paste! {
            #[allow(missing_docs)]
            impl Iterator for [< $type:camel Fixturator >]<$curve> {
                type Item = $type;

                fn next(&mut self) -> Option<Self::Item> {
                    thread_local!(static FIXT_INDEX: std::cell::RefCell<usize> = std::cell::RefCell::new(0));
                    thread_local!(static FIXT_CURVE: std::cell::RefCell<Option<$curve>> = std::cell::RefCell::new(None));
                    FIXT_INDEX.with(|f| *f.borrow_mut() = self.0.index);
                    FIXT_CURVE.with(|f| *f.borrow_mut() = Some(self.0.curve.clone()));
                    let original_index = self.0.index;
                    let ret = $e;
                    FIXT_INDEX.with(|f| self.0.index = *f.borrow());
                    if original_index == self.0.index {
                        self.0.index += 1;
                    }
                    Some(ret)
                }
            }
        }
    };
}

#[macro_export]
/// tiny convenience macro to make it easy to get the first Foo from its fixturator without using
/// the iterator interface to save a little typing
/// c.f. fixt!(Foo) vs. FooFixturator::new(Unpredictable).next().unwrap();
macro_rules! fixt {
    ( $name:tt ) => {
        $crate::fixt!($name, $crate::prelude::Unpredictable)
    };
    ( $name:tt, $curve:expr ) => {
        $crate::fixt!($name, $curve, 0)
    };
    ( $name:tt, $curve:expr, $index:expr ) => {
        $crate::prelude::paste! { [< $name:camel Fixturator>]::new_indexed($curve, $index).next().unwrap() }
    }
}

/// represents an unpredictable curve
///
/// unpredictable curves seek to:
/// - disrupt 'just so' implementations of algorithms that lean too heavily on fragile assumptions
/// - have a high probability of generating common edge cases that developers fail to cover
/// a classic example is broken/forgotten NaN handling in code that uses floats for calculations
///
/// in general this is what we want from our tests, to remind us of where we are _wrong_ about our
/// assumptions in our code.
/// it is likely that you want to use the Unpredictable curve as the defacto choice for testing.
///
/// however, note that unpredictable curves are NOT intended:
/// - to comprehensively cover any particular value space
/// - to replace property/fuzz testing
/// - to algorithmically explore edge-cases in an automated fashion
/// - to assert any particular security or correctness concern
///
/// unpredictable curves are a great way to knock off some low hanging fruit, especially around
/// numeric calculations and utf-8 handling, but are no replacement for stringent approaches.
#[derive(Clone, Copy)]
pub struct Unpredictable;

/// represents a predictable curve
///
/// a predictable curve simply iterates over some known progression of values in the same way every
/// test run.
///
/// predictable curves can be convenient, or even necessary, if an unpredictable curve breaks our
/// ability to make specific assertions about our code.
///
/// for example, we may want to demonstrate that additon works.
/// with an unpredictable curve we can assert things like the arguments being commutative,
/// associative, additive, etc. but then we quickly end up doing a bad version of property testing.
/// better to assert known expected results of addition from various values from a predictable
/// curve and then subject the addition function to real property testing with a dedicated tool.
///
/// this curve is provided as a standard option because there is a real, common tradeoff between
/// test fragility (accuracy) and specificity (precision).
#[derive(Clone, Copy)]
pub struct Predictable;

/// represents a curve over the empty value(s)
/// the concept of "empty" is as slippery as it is of dubious value
/// how many countless hours and bugs have we lost over deciding what "is" and what "isn't"?
/// i'm looking at you, JS and PHP -_-
///
/// regardless, collections with no items, numbers with no magnitude, strings with no chars are all
/// common sources of bugs, so feel free to manifest as much emptiness as you like from this curve.
#[derive(Clone, Copy)]
pub struct Empty;

#[macro_export]
/// a direct delegation of fixtures to the inner type for new types
macro_rules! newtype_fixturator {
    ( $outer:ident<Vec<$inner:ty>> ) => {
        fixturator!(
            $outer,
            $outer(vec![]),
            {
                let mut rng = $crate::rng();
                let vec_len = rng.gen_range(0..5);
                let mut ret = vec![];
                let mut inner_fixturator =
                    $crate::prelude::paste! { [<$inner:camel Fixturator>]::new_indexed($crate::prelude::Unpredictable, get_fixt_index!()) };
                for _ in 0..vec_len {
                    ret.push(inner_fixturator.next().unwrap());
                }
                set_fixt_index!(get_fixt_index!() + 1);
                $outer(ret)
            },
            {
                let mut rng = $crate::rng();
                let vec_len = rng.gen_range(0..5);
                let mut ret = vec![];
                let mut inner_fixturator =
                    $crate::prelude::paste! { [<$inner:camel Fixturator>]::new_indexed($crate::prelude::Predictable, get_fixt_index!()) };
                for _ in 0..vec_len {
                    ret.push(inner_fixturator.next().unwrap());
                }
                set_fixt_index!(get_fixt_index!() + 1);
                $outer(ret)
            }
        );
    };
    ( $outer:ident<$inner:ty> ) => {
        fixturator!(
            $outer,
            {
                let mut index = get_fixt_index!();
                let mut fixturator =
                    $crate::prelude::paste! { [<$inner:camel Fixturator>]::new_indexed($crate::prelude::Empty, index) };
                index += 1;
                set_fixt_index!(index);
                $outer(fixturator.next().unwrap())
            },
            {
                let mut index = get_fixt_index!();
                let mut fixturator =
                    $crate::prelude::paste! { [<$inner:camel Fixturator>]::new_indexed($crate::prelude::Unpredictable, index) };
                index += 1;
                set_fixt_index!(index);
                $outer(fixturator.next().unwrap())
            },
            {
                let mut index = get_fixt_index!();
                let mut fixturator =
                    $crate::prelude::paste! { [<$inner:camel Fixturator>]::new_indexed($crate::prelude::Predictable, index) };
                index += 1;
                set_fixt_index!(index);
                $outer(fixturator.next().unwrap())
            }
        );
    };
}

#[macro_export]
/// a direct delegation of fixtures to the inner type for wasm io types
/// See zome types crate
macro_rules! wasm_io_fixturator {
    ( $outer:ident<$inner:ty> ) => {
        fixturator!(
            $outer,
            {
                let mut fixturator =
                    $crate::prelude::paste! { [<$inner:camel Fixturator>]::new_indexed($crate::prelude::Empty, get_fixt_index!()) };
                set_fixt_index!(get_fixt_index!() + 1);
                $outer::new(fixturator.next().unwrap())
            },
            {
                let mut fixturator =
                    $crate::prelude::paste! { [<$inner:camel Fixturator>]::new_indexed($crate::prelude::Unpredictable, get_fixt_index!()) };
                set_fixt_index!(get_fixt_index!() + 1);
                $outer::new(fixturator.next().unwrap())
            },
            {
                let mut fixturator =
                    $crate::prelude::paste! { [<$inner:camel Fixturator>]::new_indexed($crate::prelude::Predictable, get_fixt_index!()) };
                set_fixt_index!(get_fixt_index!() + 1);
                $outer::new(fixturator.next().unwrap())
            }
        );
    };
}

#[macro_export]
/// Creates a simple way to generate enums that use the strum way of iterating
/// <https://docs.rs/strum/0.18.0/strum/>
/// iterates over all the variants (Predictable) or selects random variants (Unpredictable)
/// You do still need to BYO "empty" variant as the macro doesn't know what to use there
macro_rules! enum_fixturator {
    ( $enum:ident, $empty:expr ) => {
        use rand::seq::IteratorRandom;
        use $crate::prelude::IntoEnumIterator;
        fixturator!(
            $enum,
            $empty,
            { $enum::iter().choose(&mut $crate::rng()).unwrap() },
            {
                let ret = $enum::iter().cycle().nth(self.0.index).unwrap();
                set_fixt_index!(get_fixt_index!() + 1);
                ret
            }
        );
    };
}

#[cfg(test)]
mod tests {
    use crate::prelude::*;
    use crate::string::PREDICTABLE_STRS;

    // in general enums can have a mix of whatever in their variants
    #[derive(PartialEq, Debug)]
    pub enum Foo {
        A,
        B(String),
    }

    fixturator!(
        Foo;
        enum [ A B ];
        curve Empty Foo::A;
        curve Unpredictable match FooVariant::random() {
            FooVariant::A => Foo::A,
            FooVariant::B => Foo::B(fixt!(String)),
        };
        curve Predictable match FooVariant::nth(get_fixt_index!()) {
            FooVariant::A => Foo::A,
            FooVariant::B => Foo::B(StringFixturator::new_indexed(Predictable, get_fixt_index!()).next().unwrap()),
        };
    );

    #[test]
    fn enum_test() {
        assert_eq!(FooFixturator::new(Predictable).next().unwrap(), Foo::A,);

        FooFixturator::new(Unpredictable).next().unwrap();

        assert_eq!(FooFixturator::new(Empty).next().unwrap(), Foo::A,);

        let mut fixt_iter = FooFixturator::new(Predictable);
        assert_eq!(fixt_iter.next().unwrap(), Foo::A);
        let string = StringFixturator::new_indexed(Predictable, 1)
            .next()
            .unwrap();
        assert_eq!(fixt_iter.next().unwrap(), Foo::B(string));
    }

    #[derive(PartialEq, Debug)]
    pub enum UnitFoo {
        A,
        B,
        C,
    }

    fixturator!(
        UnitFoo;
        unit variants [ A B C ] empty B;
    );

    #[test]
    fn unit_variants_test() {
        assert_eq!(
            UnitFooFixturator::new(Predictable).next().unwrap(),
            UnitFoo::A,
        );

        // smoke test Unpredictable
        UnitFooFixturator::new(Unpredictable).next().unwrap();

        assert_eq!(UnitFooFixturator::new(Empty).next().unwrap(), UnitFoo::B,);
    }

    #[derive(PartialEq, Debug, Clone)]
    pub enum VariantFoo {
        A(String),
        B(usize),
        C(bool),
    }

    fixturator!(
        VariantFoo;
        variants [ A(String) B(usize) C(bool) ];
    );

    #[test]
    fn variant_variants_test() {
        let mut predictable_fixturator = VariantFooFixturator::new(Predictable);
        for expected in [
            VariantFoo::A("💯".into()),
            VariantFoo::B(1),
            VariantFoo::C(true),
            VariantFoo::A(".".into()),
            VariantFoo::B(4),
            VariantFoo::C(false),
        ]
        .iter()
        {
            assert_eq!(expected.to_owned(), predictable_fixturator.next().unwrap(),);
        }

        let mut unpredictable_fixturator = VariantFooFixturator::new(Unpredictable);
        for _ in 0..10 {
            // smoke test
            unpredictable_fixturator.next().unwrap();
        }

        let mut empty_fixturator = VariantFooFixturator::new(Empty);
        for _ in 0..10 {
            match empty_fixturator.next().unwrap() {
                VariantFoo::A(s) => assert_eq!(s, ""),
                VariantFoo::B(n) => assert_eq!(n, 0),
                VariantFoo::C(b) => assert!(!b),
            }
        }
    }

    #[derive(Debug, PartialEq)]
    pub struct StringFoo(String);

    impl From<String> for StringFoo {
        fn from(s: String) -> Self {
            Self(s)
        }
    }

    fixturator!(StringFoo; from String;);

    #[test]
    fn from_test() {
        let mut predictable_fixturator = StringFooFixturator::new(Predictable);
        for expected in PREDICTABLE_STRS.iter() {
            assert_eq!(
                StringFoo::from(expected.to_string()),
                predictable_fixturator.next().unwrap()
            );
        }

        let mut unpredictable_fixturator = StringFooFixturator::new(Unpredictable);
        for _ in 0..10 {
            // smoke test
            unpredictable_fixturator.next().unwrap();
        }

        let mut empty_fixturator = StringFooFixturator::new(Empty);
        for _ in 0..10 {
            assert_eq!(
                StringFoo::from("".to_string()),
                empty_fixturator.next().unwrap(),
            );
        }
    }

    #[derive(Debug, PartialEq)]
    pub struct ConstructedFoo {
        bar: bool,
    }

    impl ConstructedFoo {
        fn from_bar(bar: bool) -> Self {
            Self { bar }
        }
    }

    fixturator!(
        ConstructedFoo;
        constructor fn from_bar(bool);
    );

    #[test]
    fn constructor_test() {
        let mut predictable_fixturator = ConstructedFooFixturator::new(Predictable);
        for expected in [true, false].iter().cycle().take(5) {
            assert_eq!(
                ConstructedFoo::from_bar(*expected),
                predictable_fixturator.next().unwrap(),
            );
        }

        let mut unpredictable_fixturator = ConstructedFooFixturator::new(Unpredictable);
        for _ in 0..10 {
            // smoke test
            unpredictable_fixturator.next().unwrap();
        }

        let mut empty_fixturator = ConstructedFooFixturator::new(Empty);
        for _ in 0..10 {
            assert_eq!(
                ConstructedFoo::from_bar(false),
                empty_fixturator.next().unwrap(),
            );
        }
    }
}