1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
// Copyright © 2018–2022 Trevor Spiteri

// This library is free software: you can redistribute it and/or modify it under
// the terms of either
//
//   * the Apache License, Version 2.0 or
//   * the MIT License
//
// at your option.
//
// You should have recieved copies of the Apache License and the MIT License
// along with the library. If not, see
// <https://www.apache.org/licenses/LICENSE-2.0> and
// <https://opensource.org/licenses/MIT>.

use crate::{
    float_helper, int_helper,
    traits::{Fixed, FixedBits, FixedEquiv, FromFixed, ToFixed},
    FixedI128, FixedI16, FixedI32, FixedI64, FixedI8, FixedU128, FixedU16, FixedU32, FixedU64,
    FixedU8, F128,
};
use az::{OverflowingAs, OverflowingCast, OverflowingCastFrom};
use bytemuck::TransparentWrapper;
use core::mem;
use half::{bf16, f16};

impl ToFixed for bool {
    /// Converts a [`bool`] to a fixed-point number.
    ///
    /// # Panics
    ///
    /// When debug assertions are enabled, panics if the value does
    /// not fit. When debug assertions are not enabled, the wrapped
    /// value can be returned, but it is not considered a breaking
    /// change if in the future it panics; if wrapping is required use
    /// [`wrapping_to_fixed`] instead.
    ///
    /// [`wrapping_to_fixed`]: ToFixed::wrapping_to_fixed
    #[inline]
    fn to_fixed<F: Fixed>(self) -> F {
        ToFixed::to_fixed(self as u8)
    }

    /// Converts a [`bool`] to a fixed-point number if it fits, otherwise returns [`None`].
    #[inline]
    fn checked_to_fixed<F: Fixed>(self) -> Option<F> {
        ToFixed::checked_to_fixed(self as u8)
    }

    /// Convert a [`bool`] to a fixed-point number, saturating if it does not fit.
    #[inline]
    fn saturating_to_fixed<F: Fixed>(self) -> F {
        ToFixed::saturating_to_fixed(self as u8)
    }

    /// Converts a [`bool`] to a fixed-point number, wrapping if it does not fit.
    #[inline]
    fn wrapping_to_fixed<F: Fixed>(self) -> F {
        ToFixed::wrapping_to_fixed(self as u8)
    }

    /// Converts a [`bool`] to a fixed-point number.
    ///
    /// Returns a [tuple] of the fixed-point number and a [`bool`]
    /// indicating whether an overflow has occurred. On overflow, the
    /// wrapped value is returned.
    #[inline]
    fn overflowing_to_fixed<F: Fixed>(self) -> (F, bool) {
        ToFixed::overflowing_to_fixed(self as u8)
    }

    /// Converts a [`bool`] to a fixed-point number, panicking if it
    /// does not fit.
    ///
    /// # Panics
    ///
    /// Panics if the value does not fit, even when debug assertions
    /// are not enabled.
    #[inline]
    #[track_caller]
    fn unwrapped_to_fixed<F: Fixed>(self) -> F {
        ToFixed::unwrapped_to_fixed(self as u8)
    }
}

macro_rules! impl_int {
    ($Int:ident as $IntAs:ident, $AsEquiv:ident) => {
        impl FromFixed for $Int {
            /// Converts a fixed-point number to an integer.
            ///
            /// Any fractional bits are discarded, which rounds towards &minus;∞.
            ///
            /// # Panics
            ///
            /// When debug assertions are enabled, panics if the value
            /// does not fit. When debug assertions are not enabled,
            /// the wrapped value can be returned, but it is not
            /// considered a breaking change if in the future it
            /// panics; if wrapping is required use
            /// [`wrapping_from_fixed`] instead.
            ///
            /// [`wrapping_from_fixed`]: FromFixed::wrapping_from_fixed
            #[inline]
            fn from_fixed<F: Fixed>(src: F) -> Self {
                $AsEquiv::<0>::from_fixed(src).to_bits() as $Int
            }

            /// Converts a fixed-point number to an integer if it fits, otherwise returns [`None`].
            ///
            /// Any fractional bits are discarded, which rounds towards &minus;∞.
            #[inline]
            fn checked_from_fixed<F: Fixed>(src: F) -> Option<Self> {
                $AsEquiv::<0>::checked_from_fixed(src).map(|x| x.to_bits() as $Int)
            }

            /// Converts a fixed-point number to an integer, saturating if it does not fit.
            ///
            /// Any fractional bits are discarded, which rounds towards &minus;∞.
            #[inline]
            fn saturating_from_fixed<F: Fixed>(src: F) -> Self {
                $AsEquiv::<0>::saturating_from_fixed(src).to_bits() as $Int
            }

            /// Converts a fixed-point number to an integer, wrapping if it does not fit.
            ///
            /// Any fractional bits are discarded, which rounds towards &minus;∞.
            #[inline]
            fn wrapping_from_fixed<F: Fixed>(src: F) -> Self {
                $AsEquiv::<0>::wrapping_from_fixed(src).to_bits() as $Int
            }

            /// Converts a fixed-point number to an integer.
            ///
            /// Returns a [tuple] of the value and a [`bool`] indicating whether
            /// an overflow has occurred. On overflow, the wrapped value is
            /// returned.
            ///
            /// Any fractional bits are discarded, which rounds towards &minus;∞.
            #[inline]
            fn overflowing_from_fixed<F: Fixed>(src: F) -> (Self, bool) {
                let (fixed, overflow) = $AsEquiv::<0>::overflowing_from_fixed(src);
                (fixed.to_bits() as $Int, overflow)
            }

            /// Converts a fixed-point number to an integer, panicking if it does not fit.
            ///
            /// Any fractional bits are discarded, which rounds towards &minus;∞.
            ///
            /// # Panics
            ///
            /// Panics if the value
            /// does not fit, even when debug assertions are not enabled.
            #[inline]
            fn unwrapped_from_fixed<F: Fixed>(src: F) -> Self {
                $AsEquiv::<0>::unwrapped_from_fixed(src).to_bits() as $Int
            }
        }

        impl ToFixed for $Int {
            /// Converts an integer to a fixed-point number.
            ///
            /// # Panics
            ///
            /// When debug assertions are enabled, panics if the value
            /// does not fit. When debug assertions are not enabled,
            /// the wrapped value can be returned, but it is not
            /// considered a breaking change if in the future it
            /// panics; if wrapping is required use
            /// [`wrapping_to_fixed`] instead.
            ///
            /// [`wrapping_to_fixed`]: ToFixed::wrapping_to_fixed
            #[inline]
            fn to_fixed<F: Fixed>(self) -> F {
                $AsEquiv::<0>::from_bits(self as $IntAs).to_fixed()
            }

            /// Converts an integer to a fixed-point number if it fits, otherwise returns [`None`].
            #[inline]
            fn checked_to_fixed<F: Fixed>(self) -> Option<F> {
                $AsEquiv::<0>::from_bits(self as $IntAs).checked_to_fixed()
            }

            /// Converts an integer to a fixed-point number, saturating if it does not fit.
            #[inline]
            fn saturating_to_fixed<F: Fixed>(self) -> F {
                $AsEquiv::<0>::from_bits(self as $IntAs).saturating_to_fixed()
            }

            /// Converts an integer to a fixed-point number, wrapping if it does not fit.
            #[inline]
            fn wrapping_to_fixed<F: Fixed>(self) -> F {
                $AsEquiv::<0>::from_bits(self as $IntAs).wrapping_to_fixed()
            }

            /// Converts an integer to a fixed-point number.
            ///
            /// Returns a [tuple] of the fixed-point number and a [`bool`]
            /// indicating whether an overflow has occurred. On overflow, the
            /// wrapped value is returned.
            #[inline]
            fn overflowing_to_fixed<F: Fixed>(self) -> (F, bool) {
                $AsEquiv::<0>::from_bits(self as $IntAs).overflowing_to_fixed()
            }

            /// Converts an integer to a fixed-point number, panicking if it does not fit.
            ///
            /// # Panics
            ///
            /// Panics if the value does not fit, even when debug
            /// assertions are not enabled.
            #[inline]
            fn unwrapped_to_fixed<F: Fixed>(self) -> F {
                $AsEquiv::<0>::from_bits(self as $IntAs).unwrapped_to_fixed()
            }
        }
    };
}

impl_int! { i8 as i8, FixedI8 }
impl_int! { i16 as i16, FixedI16 }
impl_int! { i32 as i32, FixedI32 }
impl_int! { i64 as i64, FixedI64 }
impl_int! { i128 as i128, FixedI128 }
#[cfg(target_pointer_width = "16")]
impl_int! { isize as i16, FixedI16 }
#[cfg(target_pointer_width = "32")]
impl_int! { isize as i32, FixedI32 }
#[cfg(target_pointer_width = "64")]
impl_int! { isize as i64, FixedI64 }
impl_int! { u8 as u8, FixedU8 }
impl_int! { u16 as u16, FixedU16 }
impl_int! { u32 as u32, FixedU32 }
impl_int! { u64 as u64, FixedU64 }
impl_int! { u128 as u128, FixedU128 }
#[cfg(target_pointer_width = "16")]
impl_int! { usize as u16, FixedU16 }
#[cfg(target_pointer_width = "32")]
impl_int! { usize as u32, FixedU32 }
#[cfg(target_pointer_width = "64")]
impl_int! { usize as u64, FixedU64 }

macro_rules! impl_int_equiv {
    ($Int:ident, $Equiv:ident) => {
        impl FixedEquiv for $Int {
            type Equiv = $Equiv<0>;

            #[inline]
            fn to_fixed_equiv(self) -> $Equiv<0> {
                $Equiv::from_bits(self)
            }

            #[inline]
            fn as_fixed_equiv(&self) -> &$Equiv<0> {
                $Equiv::wrap_ref(self)
            }

            #[inline]
            fn as_fixed_equiv_mut(&mut self) -> &mut $Equiv<0> {
                $Equiv::wrap_mut(self)
            }

            #[inline]
            fn from_fixed_equiv(f: $Equiv<0>) -> $Int {
                f.to_bits()
            }

            #[inline]
            fn ref_from_fixed_equiv(f: &$Equiv<0>) -> &$Int {
                &f.bits
            }

            #[inline]
            fn mut_from_fixed_equiv(f: &mut $Equiv<0>) -> &mut $Int {
                &mut f.bits
            }
        }
    };
}

impl_int_equiv! { i8, FixedI8 }
impl_int_equiv! { i16, FixedI16 }
impl_int_equiv! { i32, FixedI32 }
impl_int_equiv! { i64, FixedI64 }
impl_int_equiv! { i128, FixedI128 }
impl_int_equiv! { u8, FixedU8 }
impl_int_equiv! { u16, FixedU16 }
impl_int_equiv! { u32, FixedU32 }
impl_int_equiv! { u64, FixedU64 }
impl_int_equiv! { u128, FixedU128 }

#[inline]
fn leading_ones<Bits: FixedBits>(bits: Bits) -> u32 {
    let neg_overflows = Bits::overflowing_cast_from(-1i8).1;
    let is_signed = !neg_overflows;
    match (is_signed, mem::size_of::<Bits>()) {
        (false, 1) => bits.overflowing_as::<u8>().0.leading_ones(),
        (false, 2) => bits.overflowing_as::<u16>().0.leading_ones(),
        (false, 4) => bits.overflowing_as::<u32>().0.leading_ones(),
        (false, 8) => bits.overflowing_as::<u64>().0.leading_ones(),
        (false, 16) => bits.overflowing_as::<u128>().0.leading_ones(),
        (true, 1) => bits.overflowing_as::<i8>().0.leading_ones(),
        (true, 2) => bits.overflowing_as::<i16>().0.leading_ones(),
        (true, 4) => bits.overflowing_as::<i32>().0.leading_ones(),
        (true, 8) => bits.overflowing_as::<i64>().0.leading_ones(),
        (true, 16) => bits.overflowing_as::<i128>().0.leading_ones(),
        _ => unreachable!(),
    }
}

#[inline]
fn leading_zeros<Bits: FixedBits>(bits: Bits) -> u32 {
    let neg_overflows = Bits::overflowing_cast_from(-1i8).1;
    let is_signed = !neg_overflows;
    match (is_signed, mem::size_of::<Bits>()) {
        (false, 1) => bits.overflowing_as::<u8>().0.leading_zeros(),
        (false, 2) => bits.overflowing_as::<u16>().0.leading_zeros(),
        (false, 4) => bits.overflowing_as::<u32>().0.leading_zeros(),
        (false, 8) => bits.overflowing_as::<u64>().0.leading_zeros(),
        (false, 16) => bits.overflowing_as::<u128>().0.leading_zeros(),
        (true, 1) => bits.overflowing_as::<i8>().0.leading_zeros(),
        (true, 2) => bits.overflowing_as::<i16>().0.leading_zeros(),
        (true, 4) => bits.overflowing_as::<i32>().0.leading_zeros(),
        (true, 8) => bits.overflowing_as::<i64>().0.leading_zeros(),
        (true, 16) => bits.overflowing_as::<i128>().0.leading_zeros(),
        _ => unreachable!(),
    }
}

macro_rules! impl_float {
    ($Float:ident, $FloatI:ident, $FloatU:ident) => {
        impl FromFixed for $Float {
            /// Converts a fixed-point number to a floating-point number.
            ///
            /// Rounding is to the nearest, with ties rounded to even.
            ///
            /// # Panics
            ///
            /// When debug assertions are enabled, panics if the value
            /// does not fit. When debug assertions are not enabled,
            /// the wrapped value can be returned, but it is not
            /// considered a breaking change if in the future it
            /// panics; if wrapping is required use
            /// [`wrapping_from_fixed`] instead.
            ///
            /// [`wrapping_from_fixed`]: FromFixed::wrapping_from_fixed
            #[inline]
            fn from_fixed<F: Fixed>(src: F) -> Self {
                let zero = F::Bits::overflowing_cast_from(0u8).0;
                let src = src.to_bits();
                // handle zero early so that we can assume bits != 0
                if src == zero {
                    return Self::from_bits(0);
                }

                let src_neg_overflows = F::Bits::overflowing_cast_from(-1i8).1;
                let src_is_signed = !src_neg_overflows;
                let src_bits = mem::size_of::<F>() as u32 * 8;
                let (neg, abs, excess_shift) = if $FloatU::BITS >= src_bits {
                    if src_is_signed {
                        let (widened, overflow): ($FloatI, bool) = src.overflowing_cast();
                        debug_assert!(!overflow);
                        let (neg, abs) = int_helper::$FloatI::neg_abs(widened);
                        let shift = abs.leading_zeros();
                        (neg, abs << shift, shift as i32)
                    } else {
                        let (widened, overflow): ($FloatU, bool) = src.overflowing_cast();
                        debug_assert!(!overflow);
                        let shift = widened.leading_zeros();
                        (false, widened << shift, shift as i32)
                    }
                } else {
                    // We need to narrow the source. First we push the bits to
                    // the left so that we don't crop off bits we'd need.
                    let lossless_shift = if !src_is_signed {
                        leading_zeros(src)
                    } else if src < zero {
                        leading_ones(src) - 1
                    } else {
                        leading_zeros(src) - 1
                    };
                    let src = src << lossless_shift;
                    let narrow_by = src_bits - $FloatU::BITS;
                    let narrowed = src >> narrow_by;
                    let sig_lower_bits = narrowed << narrow_by != src;
                    if src_is_signed {
                        let (narrowed, overflow) = narrowed.overflowing_as::<$FloatI>();
                        debug_assert!(!overflow);
                        let (neg, mut abs) = int_helper::$FloatI::neg_abs(narrowed);
                        let shift = abs.leading_zeros();
                        abs <<= shift;
                        if sig_lower_bits {
                            abs |= 1;
                        }
                        (neg, abs, (shift + lossless_shift) as i32 - narrow_by as i32)
                    } else {
                        let (mut narrowed, overflow) = narrowed.overflowing_as::<$FloatU>();
                        debug_assert!(!overflow);
                        debug_assert!(narrowed.leading_zeros() == 0);
                        if sig_lower_bits {
                            narrowed |= 1;
                        }
                        (false, narrowed, lossless_shift as i32 - narrow_by as i32)
                    }
                };
                // excess_shift is how much we have shifted the bits to the left.
                // So eventually we need to divide if excess_shift is positive.
                // Similarly we need to divide if F::FRAC_BITS is positive.
                // That means that we can add excess_shift and F::FRAC_BITS.
                let frac = F::FRAC_BITS.saturating_add(excess_shift);
                float_helper::$Float::from_neg_abs(neg, abs, frac)
            }

            /// Converts a fixed-point number to a floating-point
            /// number if it fits, otherwise returns [`None`].
            ///
            /// Rounding is to the nearest, with ties rounded to even.
            #[inline]
            fn checked_from_fixed<F: Fixed>(src: F) -> Option<Self> {
                Some(FromFixed::from_fixed(src))
            }

            /// Converts a fixed-point number to a floating-point
            /// number, saturating if it does not fit.
            ///
            /// Rounding is to the nearest, with ties rounded to even.
            #[inline]
            fn saturating_from_fixed<F: Fixed>(src: F) -> Self {
                FromFixed::from_fixed(src)
            }

            /// Converts a fixed-point number to a floating-point
            /// number, wrapping if it does not fit.
            ///
            /// Rounding is to the nearest, with ties rounded to even.
            #[inline]
            fn wrapping_from_fixed<F: Fixed>(src: F) -> Self {
                FromFixed::from_fixed(src)
            }

            /// Converts a fixed-point number to a floating-point number.
            ///
            /// Returns a [tuple] of the value and a [`bool`]
            /// indicating whether an overflow has occurred. On
            /// overflow, the wrapped value is returned.
            ///
            /// Rounding is to the nearest, with ties rounded to even.
            #[inline]
            fn overflowing_from_fixed<F: Fixed>(src: F) -> (Self, bool) {
                (FromFixed::from_fixed(src), false)
            }

            /// Converts a fixed-point number to a floating-point
            /// number, panicking if it does not fit.
            ///
            /// Rounding is to the nearest, with ties rounded to even.
            ///
            /// # Panics
            ///
            /// Panics if the value does not fit, even when debug
            /// assertions are not enabled.
            #[inline]
            fn unwrapped_from_fixed<F: Fixed>(src: F) -> Self {
                FromFixed::from_fixed(src)
            }
        }

        impl ToFixed for $Float {
            comment! {
                "Converts a floating-point number to a fixed-point number.

Rounding is to the nearest, with ties rounded to even.

# Panics

Panics if `self` is not [finite].

When debug assertions are enabled, also panics if the value does not
fit. When debug assertions are not enabled, the wrapped value can be
returned, but it is not considered a breaking change if in the future
it panics; if wrapping is required use [`wrapping_to_fixed`] instead.

[`wrapping_to_fixed`]: ToFixed::wrapping_to_fixed
[finite]: ", stringify!($Float), "::is_finite
";
                #[inline]
                fn to_fixed<F: Fixed>(self) -> F {
                    let (wrapped, overflow) = ToFixed::overflowing_to_fixed(self);
                    debug_assert!(!overflow, "overflow");
                    wrapped
                }
            }

            /// Converts a floating-point number to a fixed-point
            /// number if it fits, otherwise returns [`None`].
            ///
            /// Rounding is to the nearest, with ties rounded to even.
            #[inline]
            fn checked_to_fixed<F: Fixed>(self) -> Option<F> {
                if !self.is_finite() {
                    return None;
                }
                match ToFixed::overflowing_to_fixed(self) {
                    (wrapped, false) => Some(wrapped),
                    (_, true) => None,
                }
            }

            comment! {
                "Converts a floating-point number to a fixed-point
number, saturating if it does not fit.

Rounding is to the nearest, with ties rounded to even.

# Panics

Panics if `self` is [NaN].

[NaN]: ", stringify!($Float), "::is_nan
";
                #[inline]
                fn saturating_to_fixed<F: Fixed>(self) -> F {
                    if self.is_nan() {
                        panic!("NaN");
                    }
                    if self.is_finite() {
                        let (wrapped, overflow) = ToFixed::overflowing_to_fixed(self);
                        if !overflow {
                            return wrapped;
                        }
                    }
                    // either self is infinite, or overflow flag returned is true
                    if self.is_sign_negative() {
                        F::MIN
                    } else {
                        F::MAX
                    }
                }
            }

            comment! {
                "Converts a floating-point number to a fixed-point
number, wrapping if it does not fit.

Rounding is to the nearest, with ties rounded to even.

# Panics

Panics if `self` is not [finite].

[finite]: ", stringify!($Float), "::is_finite
";
                #[inline]
                fn wrapping_to_fixed<F: Fixed>(self) -> F {
                    let (wrapped, _) = ToFixed::overflowing_to_fixed(self);
                    wrapped
                }
            }

            comment! {
            "Converts a floating-point number to a fixed-point number.

Returns a [tuple] of the fixed-point number and a [`bool`] indicating
whether an overflow has occurred. On overflow, the wrapped value is
returned.

Rounding is to the nearest, with ties rounded to even.

# Panics

Panics if `self` is not [finite].

[finite]: ", stringify!($Float), "::is_finite
";
                #[inline]
                #[track_caller]
                fn overflowing_to_fixed<F: Fixed>(self) -> (F, bool) {
                    float_helper::$Float::overflowing_to_fixed(self)
                }
            }

            comment! {
                "Converts a floating-point number to a fixed-point
number, panicking if it does not fit.

Rounding is to the nearest, with ties rounded to even.

# Panics

Panics if `self` is not [finite] or if the value does not fit, even
when debug assertions are not enabled.

[finite]: ", stringify!($Float), "::is_finite
";
                #[inline]
                fn unwrapped_to_fixed<F: Fixed>(self) -> F {
                    match ToFixed::overflowing_to_fixed(self) {
                        (val, false) => val,
                        (_, true) => panic!("overflow"),
                    }
                }
            }
        }
    };
}

impl_float! { f16, i16, u16 }
impl_float! { bf16, i16, u16 }
impl_float! { f32, i32, u32 }
impl_float! { f64, i64, u64 }
impl_float! { F128, i128, u128 }