1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
#![no_std]
#![deny(clippy::pedantic, warnings, missing_docs, unsafe_code)]
// Most of the 'allow' category...
#![deny(absolute_paths_not_starting_with_crate, box_pointers, dead_code)]
#![deny(elided_lifetimes_in_paths, explicit_outlives_requirements, keyword_idents)]
#![deny(let_underscore_drop, macro_use_extern_crate, meta_variable_misuse, missing_abi)]
#![deny(non_ascii_idents, rust_2021_incompatible_closure_captures)]
#![deny(rust_2021_incompatible_or_patterns, rust_2021_prefixes_incompatible_syntax)]
#![deny(rust_2021_prelude_collisions, single_use_lifetimes, trivial_casts)]
#![deny(trivial_numeric_casts, unreachable_pub, unsafe_op_in_unsafe_fn, unstable_features)]
#![deny(unused_extern_crates, unused_import_braces, unused_lifetimes, unused_macro_rules)]
#![deny(unused_qualifications, unused_results, variant_size_differences)]
//
#![doc = include_str!("../README.md")]

// Implements FIPS 204 draft Module-Lattice-Based Digital Signature Standard.
// See <https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.204.ipd.pdf>

// Functionality map per draft FIPS 204
//
// Algorithm 1 ML-DSA.KeyGen() on page 15                 --> ml_dsa.rs
// Algorithm 2 ML-DSA.Sign(sk,M) on page 17               --> ml_dsa.rs
// Algorithm 3 ML-DSA.Verify(pk,M,σ) on page 19           --> ml_dsa.rs
// Algorithm 4 IntegerToBits(x,α) one page 20             --> (optimized away) conversion.rs
// Algorithm 5 BitsToInteger(y) on page 20                --> (optimized away) conversion.rs
// Algorithm 6 BitsToBytes(y) on page 21                  --> (optimized away) conversion.rs
// Algorithm 7 BytesToBits(z) on page 21                  --> (optimized away) conversion.rs
// Algorithm 8 CoefFromThreeBytes(b0,b1,b2) on page 21    --> conversion.rs
// Algorithm 9 CoefFromHalfByte(b) on page 22             --> conversion.rs
// Algorithm 10 SimpleBitPack(w,b) on page 22             --> conversion.rs
// Algorithm 11 BitPack(w,a,b) on page 22                 --> conversion.rs
// Algorithm 12 SimpleBitUnpack(v,b) on page 23           --> conversion.rs
// Algorithm 13 BitUnpack(v,a,b) on page 23               --> conversion.rs
// Algorithm 14 HintBitPack(h) on page 24                 --> conversion.rs
// Algorithm 15 HintBitUnpack(y) on page 24               --> conversion.rs
// Algorithm 16 pkEncode(ρ,t1) on page 25                 --> encodings.rs
// Algorithm 17 pkDecode(pk) on page 25                   --> encodings.rs
// Algorithm 18 skEncode(ρ,K,tr,s1,s2,t0) on page 26      --> encodings.rs
// Algorithm 19 skDecode(sk) on page 27                   --> encodings.rs
// Algorithm 20 sigEncode(c˜,z,h) on page 28              --> encodings.rs
// Algorithm 21 sigDecode(σ) on page 28                   --> encodings.rs
// Algorithm 22 w1Encode(w1) on page 28                   --> encodings.rs
// Algorithm 23 SampleInBall(ρ) on page 30                --> hashing.rs
// Algorithm 24 RejNTTPoly(ρ) on page 30                  --> hashing.rs
// Algorithm 25 RejBoundedPoly(ρ) on page 31              --> hashing.rs
// Algorithm 26 ExpandA(ρ) on page 31                     --> hashing.rs
// Algorithm 27 ExpandS(ρ) on page 32                     --> hashing.rs
// Algorithm 28 ExpandMask(ρ,µ) on page 32                --> hashing.rs
// Algorithm 29 Power2Round(r) on page 34                 --> high_low.rs
// Algorithm 30 Decompose(r) on page 34                   --> high_low.rs
// Algorithm 31 HighBits(r) on page 34                    --> high_low.rs
// Algorithm 32 LowBits(r) on page 35                     --> high_low.rs
// Algorithm 33 MakeHint(z,r) on page 35                  --> high_low.rs
// Algorithm 34 UseHint(h,r) on page 35                   --> high_low.rs
// Algorithm 35 NTT(w) on page 35                         --> ntt.rs
// Algorithm 36 NTT−1(wˆ) on page 27                      --> ntt.rs
// Types are in types.rs, traits are in traits.rs...

// Note that debug! statements enforce correct program construction and are not involved
// in any operational dataflow (so are good fuzz targets). The ensure! statements implement
// conservative dataflow validation. Separately, functions are only generic over security
// parameters that are directly involved in memory allocation (on the stack). Some coding
// oddities are driven by the fact that Rust doesn't currently do well with arithmetic on
// generic parameters.

// Note that the `CTEST` generic parameter supports constant-time measurements by dudect. This
// is done by carefully removing timing variability of non-secret data (such as the rejection
// sampling of hash derived from rho). All normal crate functionality has this set to `false`
// except for the single function (per namespace) `dudect_keygen_sign_with_rng()` which is only
// exposed when the non-default `dudect` feature is enabled.

/// The `rand_core` types are re-exported so that users of fips204 do not
/// have to worry about using the exact correct version of `rand_core`.
pub use rand_core::{CryptoRng, Error as RngError, RngCore};

mod conversion;
mod encodings;
mod hashing;
mod helpers;
mod high_low;
mod ml_dsa;
mod ntt;
mod types;

/// All functionality is covered by traits, such that consumers can utilize trait objects as desired.
pub mod traits;

// Applies across all security parameter sets
const Q: i32 = 8_380_417; // 2^23 - 2^13 + 1 = 0x7FE001; See https://oeis.org/A234388
const ZETA: i32 = 1753; // See line 906 et al of FIPS 204
const D: u32 = 13; // See table 1 page 13 second row


// This common functionality is injected into each security parameter set namespace, and in
// general is a lightweight wrapper into the ml_dsa functions.
macro_rules! functionality {
    () => {
        use crate::encodings::{pk_decode, sk_decode};
        use crate::helpers::bit_length;
        use crate::ml_dsa;
        use crate::traits::{KeyGen, SerDes, Signer, Verifier};
        use rand_core::CryptoRngCore;
        use zeroize::{Zeroize, ZeroizeOnDrop};

        const LAMBDA_DIV4: usize = LAMBDA / 4;
        const W1_LEN: usize = 32 * K * bit_length((Q - 1) / (2 * GAMMA2) - 1);
        const CTEST: bool = false; // when true, the logid goes into CT test mode

        // ----- 'EXTERNAL' DATA TYPES -----

        /// Correctly sized private key specific to the target security parameter set. <br>
        /// Implements the [`crate::traits::Signer`] and [`crate::traits::SerDes`] traits.
        pub type PrivateKey = crate::types::PrivateKey<SK_LEN>;

        /// Expanded private key, specific to the target security parameter set, that contains <br>
        /// precomputed elements which increase (repeated) signature performance. Implements only
        /// the [`crate::traits::Signer`] trait. Derived from the `PrivateKey`.
        pub type ExpandedPrivateKey = crate::types::ExpandedPrivateKey<K, L>;

        /// Correctly sized public key specific to the target security parameter set. <br>
        /// Implements the [`crate::traits::Verifier`] and [`crate::traits::SerDes`] traits.
        pub type PublicKey = crate::types::PublicKey<PK_LEN>;

        /// Expanded public key, specific to the target security parameter set, that contains <br>
        /// precomputed elements which increase (repeated) verification performance. Implements only
        /// the [`crate::traits::Verifier`] traits. Derived from the `PublicKey`.
        pub type ExpandedPublicKey = crate::types::ExpandedPublicKey<K, L>;

        /// Empty struct to enable `KeyGen` trait objects across security parameter sets. <br>
        /// Implements the [`crate::traits::KeyGen`] trait.
        #[derive(Clone, Zeroize, ZeroizeOnDrop)]
        pub struct KG(); // Arguable how useful an empty struct+trait is...

        // ----- PRIMARY FUNCTIONS ---

        /// Generates a public and private key pair specific to this security parameter set.
        /// This function utilizes the **OS default** random number generator. This function operates
        /// in constant-time relative to secret data (which specifically excludes the OS random
        /// number generator internals, the `rho` value stored in the public key, and the hash-derived
        /// `rho_prime` value that is rejection-sampled/expanded into the internal `s_1` and `s_2` values).
        /// # Errors
        /// Returns an error when the random number generator fails.
        /// # Examples
        /// ```rust
        /// # use std::error::Error;
        /// # fn main() -> Result<(), Box<dyn Error>> {
        /// # #[cfg(all(feature = "ml-dsa-44", feature = "default-rng"))] {
        /// use fips204::ml_dsa_44; // Could also be ml_dsa_65 or ml_dsa_87.
        /// use fips204::traits::{SerDes, Signer, Verifier};
        ///
        /// let message = [0u8, 1, 2, 3, 4, 5, 6, 7];
        ///
        /// // Generate key pair and signature
        /// let (pk1, sk) = ml_dsa_44::try_keygen()?; // Generate both public and secret keys
        /// let sig1 = sk.try_sign(&message)?; // Use the secret key to generate a message signature
        /// # }
        /// # Ok(())}
        /// ```
        #[cfg(feature = "default-rng")]
        pub fn try_keygen() -> Result<(PublicKey, PrivateKey), &'static str> { KG::try_keygen() }


        /// Generates a public and private key pair specific to this security parameter set.
        /// This function utilizes the **provided** random number generator. This function operates
        /// in constant-time relative to secret data (which specifically excludes the provided random
        /// number generator internals, the `rho` value stored in the public key, and the hash-derived
        /// `rho_prime` value that is rejection-sampled/expanded into the internal `s_1` and `s_2` values).
        /// # Errors
        /// Returns an error when the random number generator fails.
        /// # Examples
        /// ```rust
        /// # use std::error::Error;
        /// # fn main() -> Result<(), Box<dyn Error>> {
        /// # #[cfg(feature = "ml-dsa-44")] {
        /// use fips204::ml_dsa_44; // Could also be ml_dsa_65 or ml_dsa_87.
        /// use fips204::traits::{SerDes, Signer, Verifier};
        /// use rand_chacha::rand_core::SeedableRng;
        ///
        /// let message = [0u8, 1, 2, 3, 4, 5, 6, 7];
        /// let mut rng = rand_chacha::ChaCha8Rng::seed_from_u64(123);
        ///
        /// // Generate key pair and signature
        /// let (pk1, sk) = ml_dsa_44::try_keygen_with_rng(&mut rng)?;  // Generate both public and secret keys
        /// let sig1 = sk.try_sign_with_rng(&mut rng, &message)?;  // Use the secret key to generate a message signature
        /// # }
        /// # Ok(())}
        /// ```
        pub fn try_keygen_with_rng(
            rng: &mut impl CryptoRngCore,
        ) -> Result<(PublicKey, PrivateKey), &'static str> {
            KG::try_keygen_with_rng(rng)
        }


        impl KeyGen for KG {
            type ExpandedPrivateKey = ExpandedPrivateKey;
            type ExpandedPublicKey = ExpandedPublicKey;
            type PrivateKey = PrivateKey;
            type PublicKey = PublicKey;

            fn try_keygen_with_rng(
                rng: &mut impl CryptoRngCore,
            ) -> Result<(PublicKey, PrivateKey), &'static str> {
                let (pk, sk) = ml_dsa::key_gen::<CTEST, K, L, PK_LEN, SK_LEN>(rng, ETA)?;
                Ok((PublicKey { 0: pk }, PrivateKey { 0: sk }))
            }

            fn gen_expanded_private(
                sk: &PrivateKey,
            ) -> Result<Self::ExpandedPrivateKey, &'static str> {
                let esk = ml_dsa::sign_start::<CTEST, K, L, SK_LEN>(ETA, &sk.0)?;
                Ok(esk)
            }

            fn gen_expanded_public(
                pk: &PublicKey,
            ) -> Result<Self::ExpandedPublicKey, &'static str> {
                let epk = ml_dsa::verify_start(&pk.0)?;
                Ok(epk)
            }
        }


        impl Signer for PrivateKey {
            type Signature = [u8; SIG_LEN];

            fn try_sign_with_rng(
                &self, rng: &mut impl CryptoRngCore, message: &[u8],
            ) -> Result<Self::Signature, &'static str> {
                let esk = ml_dsa::sign_start::<CTEST, K, L, SK_LEN>(ETA, &self.0)?;
                let sig = ml_dsa::sign_finish::<CTEST, K, L, LAMBDA_DIV4, SIG_LEN, SK_LEN, W1_LEN>(
                    rng, BETA, GAMMA1, GAMMA2, OMEGA, TAU, &esk, message,
                )?;
                Ok(sig)
            }
        }


        impl Signer for ExpandedPrivateKey {
            type Signature = [u8; SIG_LEN];

            fn try_sign_with_rng(
                &self, rng: &mut impl CryptoRngCore, message: &[u8],
            ) -> Result<Self::Signature, &'static str> {
                let sig = ml_dsa::sign_finish::<CTEST, K, L, LAMBDA_DIV4, SIG_LEN, SK_LEN, W1_LEN>(
                    rng, BETA, GAMMA1, GAMMA2, OMEGA, TAU, &self, message,
                )?;
                Ok(sig)
            }
        }


        impl Verifier for PublicKey {
            type Signature = [u8; SIG_LEN];

            fn verify(
                &self, message: &[u8], sig: &Self::Signature,
            ) -> bool {
                let epk = ml_dsa::verify_start(&self.0);
                if epk.is_err() { return false };
                let res = ml_dsa::verify_finish::<K, L, LAMBDA_DIV4, PK_LEN, SIG_LEN, W1_LEN>(
                    BETA, GAMMA1, GAMMA2, OMEGA, TAU, &epk.unwrap(), &message, &sig,
                );
                if res.is_err() { return false };
                res.unwrap()
            }
        }


        impl Verifier for ExpandedPublicKey {
            type Signature = [u8; SIG_LEN];

            fn verify(
                &self, message: &[u8], sig: &Self::Signature,
            ) -> bool {
                let res = ml_dsa::verify_finish::<K, L, LAMBDA_DIV4, PK_LEN, SIG_LEN, W1_LEN>(
                    BETA, GAMMA1, GAMMA2, OMEGA, TAU, &self, &message, &sig,
                );
                if res.is_err() { return false }
                res.unwrap()
            }
        }


        // ----- SERIALIZATION AND DESERIALIZATION ---

        impl SerDes for PublicKey {
            type ByteArray = [u8; PK_LEN];

            fn try_from_bytes(pk: Self::ByteArray) -> Result<Self, &'static str> {
                let _unused =
                    pk_decode::<K, PK_LEN>(&pk).map_err(|_e| "Public key deserialization failed");
                Ok(PublicKey { 0: pk })
            }

            fn into_bytes(self) -> Self::ByteArray { self.0 }
        }


        impl SerDes for PrivateKey {
            type ByteArray = [u8; SK_LEN];

            fn try_from_bytes(sk: Self::ByteArray) -> Result<Self, &'static str> {
                let _unused = sk_decode::<K, L, SK_LEN>(ETA, &sk)
                    .map_err(|_e| "Private key deserialization failed");
                Ok(PrivateKey { 0: sk })
            }

            fn into_bytes(self) -> Self::ByteArray { self.0 }
        }

        // ----- SUPPORT FOR DUDECT CONSTANT TIME MEASUREMENTS ---

        /// This function supports the dudect constant-time measurement framework, and
        /// is only exposed with the `dudect` feature is enabled.
        /// # Errors
        /// Returns an error when the random number generator fails; propagates internal errors.
        #[cfg(feature = "dudect")]
        pub fn dudect_keygen_sign_with_rng(
            rng: &mut impl CryptoRngCore, message: &[u8],
        ) -> Result<[u8; SIG_LEN], &'static str> {
            let (_pk, sk) = ml_dsa::key_gen::<true, K, L, PK_LEN, SK_LEN>(rng, ETA)?;
            let esk = ml_dsa::sign_start::<true, K, L, SK_LEN>(ETA, &sk)?;
            let sig = ml_dsa::sign_finish::<true, K, L, LAMBDA_DIV4, SIG_LEN, SK_LEN, W1_LEN>(
                rng, BETA, GAMMA1, GAMMA2, OMEGA, TAU, &esk, message,
            )?;
            Ok(sig)
        }
    };
}

// Regarding private key sizes, see https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/EKoI0u_PuOw/m/b02zPvomBAAJ


/// Functionality for the **ML-DSA-44** security parameter set. This includes specific sizes for the
/// public key, secret key, and signature along with a number of internal constants. The ML-DSA-44
/// parameter set is claimed to be in security strength category 2.
///
/// **1)** The basic usage is for an originator to start with the [`ml_dsa_44::try_keygen`] function below to
/// generate both [`ml_dsa_44::PublicKey`] and [`ml_dsa_44::PrivateKey`] structs. The resulting
/// [`ml_dsa_44::PrivateKey`] struct implements the [`traits::Signer`] trait which supplies a variety of
/// functions to sign byte-array messages, such as [`traits::Signer::try_sign()`].
///
/// **2)** Both of the `PrivateKey` and `PublicKey` structs implement the [`traits::SerDes`] trait
/// The originator utilizes the [`traits::SerDes::into_bytes()`] functions to serialize the structs
/// into byte-arrays for storage and/or transmission, similar to the message. Upon retrieval and/or receipt,
/// the remote party utilizes the [`traits::SerDes::try_from_bytes()`] functions to deserialize the
/// byte-arrays into structs.
///
/// **3)** Finally, the remote party uses the [`traits::Verifier::verify()`] function implemented on the
/// [`ml_dsa_44::PublicKey`] struct to verify the message with the `Signature` byte array.
///
/// See the top-level [crate] documentation for example code that implements the above flow.
#[cfg(feature = "ml-dsa-44")]
pub mod ml_dsa_44 {
    use super::Q;
    const TAU: i32 = 39;
    const LAMBDA: usize = 128;
    const GAMMA1: i32 = 1 << 17;
    const GAMMA2: i32 = (Q - 1) / 88;
    const K: usize = 4;
    const L: usize = 4;
    const ETA: i32 = 2;
    const BETA: i32 = TAU * ETA;
    const OMEGA: i32 = 80;
    /// Private (secret) key length in bytes.
    pub const SK_LEN: usize = 2560;
    /// Public key length in bytes.
    pub const PK_LEN: usize = 1312;
    /// Signature length in bytes.
    pub const SIG_LEN: usize = 2420;

    functionality!();
}


/// Functionality for the **ML-DSA-65** security parameter set. This includes specific sizes for the
/// public key, secret key, and signature along with a number of internal constants. The ML-DSA-65
/// parameter set is claimed to be in security strength category 3.
///
/// **1)** The basic usage is for an originator to start with the [`ml_dsa_44::try_keygen`] function below to
/// generate both [`ml_dsa_44::PublicKey`] and [`ml_dsa_44::PrivateKey`] structs. The resulting
/// [`ml_dsa_44::PrivateKey`] struct implements the [`traits::Signer`] trait which supplies a variety of
/// functions to sign byte-array messages, such as [`traits::Signer::try_sign()`].
///
/// **2)** Both of the `PrivateKey` and `PublicKey` structs implement the [`traits::SerDes`] trait
/// The originator utilizes the [`traits::SerDes::into_bytes()`] functions to serialize the structs
/// into byte-arrays for storage and/or transmission, similar to the message. Upon retrieval and/or receipt,
/// the remote party utilizes the [`traits::SerDes::try_from_bytes()`] functions to deserialize the
/// byte-arrays into structs.
///
/// **3)** Finally, the remote party uses the [`traits::Verifier::verify()`] function implemented on the
/// [`ml_dsa_44::PublicKey`] struct to verify the message with the `Signature` byte array.
///
/// See the top-level [crate] documentation for example code that implements the above flow.
#[cfg(feature = "ml-dsa-65")]
pub mod ml_dsa_65 {
    use super::Q;
    const TAU: i32 = 49;
    const LAMBDA: usize = 192;
    const GAMMA1: i32 = 1 << 19;
    const GAMMA2: i32 = (Q - 1) / 32;
    const K: usize = 6;
    const L: usize = 5;
    const ETA: i32 = 4;
    const BETA: i32 = TAU * ETA;
    const OMEGA: i32 = 55;
    /// Private (secret) key length in bytes.
    pub const SK_LEN: usize = 4032;
    /// Public key length in bytes.
    pub const PK_LEN: usize = 1952;
    /// Signature length in bytes.
    pub const SIG_LEN: usize = 3309;

    functionality!();
}


/// Functionality for the **ML-DSA-87** security parameter set. This includes specific sizes for the
/// public key, secret key, and signature along with a number of internal constants. The ML-DSA-87
/// parameter set is claimed to be in security strength category 5.
///
/// **1)** The basic usage is for an originator to start with the [`ml_dsa_44::try_keygen`] function below to
/// generate both [`ml_dsa_44::PublicKey`] and [`ml_dsa_44::PrivateKey`] structs. The resulting
/// [`ml_dsa_44::PrivateKey`] struct implements the [`traits::Signer`] trait which supplies a variety of
/// functions to sign byte-array messages, such as [`traits::Signer::try_sign()`].
///
/// **2)** Both of the `PrivateKey` and `PublicKey` structs implement the [`traits::SerDes`] trait
/// The originator utilizes the [`traits::SerDes::into_bytes()`] functions to serialize the structs
/// into byte-arrays for storage and/or transmission, similar to the message. Upon retrieval and/or receipt,
/// the remote party utilizes the [`traits::SerDes::try_from_bytes()`] functions to deserialize the
/// byte-arrays into structs.
///
/// **3)** Finally, the remote party uses the [`traits::Verifier::verify()`] function implemented on the
/// [`ml_dsa_44::PublicKey`] struct to verify the message with the `Signature` byte array.
///
/// See the top-level [crate] documentation for example code that implements the above flow.
#[cfg(feature = "ml-dsa-87")]
pub mod ml_dsa_87 {
    use super::Q;
    const TAU: i32 = 60;
    const LAMBDA: usize = 256;
    const GAMMA1: i32 = 1 << 19;
    const GAMMA2: i32 = (Q - 1) / 32;
    const K: usize = 8;
    const L: usize = 7;
    const ETA: i32 = 2;
    const BETA: i32 = TAU * ETA;
    const OMEGA: i32 = 75;
    /// Private (secret) key length in bytes.
    pub const SK_LEN: usize = 4896;
    /// Public key length in bytes.
    pub const PK_LEN: usize = 2592;
    /// Signature length in bytes.
    pub const SIG_LEN: usize = 4627;

    functionality!();
}