1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
//! # `findshlibs`
//!
//! Find the set of shared libraries currently loaded in this process with a
//! cross platform API.
//!
//! The API entry point is the `TargetSharedLibrary` type and its
//! `SharedLibrary::each` trait method implementation.
//!
//! ## Example
//!
//! Here is an example program that prints out each shared library that is
//! loaded in the process and the addresses where each of its segments are
//! mapped into memory.
//!
//! ```
//! extern crate findshlibs;
//! use findshlibs::{Segment, SharedLibrary, TargetSharedLibrary};
//!
//! fn main() {
//!     TargetSharedLibrary::each(|shlib| {
//!         println!("{}", shlib.name().to_string_lossy());
//!
//!         for seg in shlib.segments() {
//!             println!("    {}: segment {}",
//!                      seg.actual_virtual_memory_address(shlib),
//!                      seg.name().to_string_lossy());
//!         }
//!     });
//! }
//! ```
//!
//! ## Supported OSes
//!
//! These are the OSes that `findshlibs` currently supports:
//!
//! * Linux
//! * macOS
//!
//! Is your OS missing here? Send us a pull request!
//!
//! ## Addresses
//!
//! Shared libraries' addresses can be confusing. They are loaded somewhere in
//! physical memory, but we generally don't care about physical memory
//! addresses, because only the OS can see that address and in userspace we can
//! only access memory through its virtual memory address. But even "virtual
//! memory address" is ambiguous because it isn't clear whether this is the
//! address before or after the loader maps the shared library into memory and
//! performs relocation.
//!
//! To clarify between these different kinds of addresses, we borrow some
//! terminology from [LUL][]:
//!
//! > * **SVMA** ("Stated Virtual Memory Address"): this is an address of a
//! >   symbol (etc) as it is stated in the symbol table, or other
//! >   metadata, of an object.  Such values are typically small and
//! >   start from zero or thereabouts, unless the object has been
//! >   prelinked.
//! >
//! > * **AVMA** ("Actual Virtual Memory Address"): this is the address of a
//! >   symbol (etc) in a running process, that is, once the associated
//! >   object has been mapped into a process.  Such values are typically
//! >   much larger than SVMAs, since objects can get mapped arbitrarily
//! >   far along the address space.
//! >
//! > * **"Bias"**: the difference between AVMA and SVMA for a given symbol
//! >   (specifically, AVMA - SVMA).  The bias is always an integral
//! >   number of pages.  Once we know the bias for a given object's
//! >   text section (for example), we can compute the AVMAs of all of
//! >   its text symbols by adding the bias to their SVMAs.
//!
//! [LUL]: http://searchfox.org/mozilla-central/rev/13148faaa91a1c823a7d68563d9995480e714979/tools/profiler/lul/LulMain.h#17-51

#![deny(missing_docs)]

#[macro_use]
extern crate cfg_if;

#[cfg(target_os = "macos")]
#[macro_use]
extern crate lazy_static;

use std::ffi::CStr;
use std::fmt::{self, Debug};
use std::ptr;

cfg_if!(
    if #[cfg(target_os = "linux")] {

        pub mod linux;

        /// The [`SharedLibrary` trait](./trait.SharedLibrary.html)
        /// implementation for the target operating system.
        pub type TargetSharedLibrary<'a> = linux::SharedLibrary<'a>;

    } else if #[cfg(target_os = "macos")] {

        pub mod macos;

        /// The [`SharedLibrary` trait](./trait.SharedLibrary.html)
        /// implementation for the target operating system.
        pub type TargetSharedLibrary<'a> = macos::SharedLibrary<'a>;

    } else {

        // No implementation for this platform :(

    }
);

macro_rules! simple_newtypes {
    (
        $(
            $(#[$attr:meta])*
            type $name:ident = $oldty:ty
            where
                default = $default:expr ,
                display = $format:expr ;
        )*
    ) => {
        $(
            $(#[$attr])*
            #[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
            pub struct $name(pub $oldty);

            impl Default for $name {
                #[inline]
                fn default() -> Self {
                    $name( $default )
                }
            }

            impl From<$oldty> for $name {
                fn from(x: $oldty) -> $name {
                    $name(x)
                }
            }

            impl From<$name> for $oldty {
                fn from($name(x): $name) -> $oldty {
                    x
                }
            }

            impl fmt::Display for $name {
                fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
                    write!(f, $format, self.0)
                }
            }
        )*
    }
}

simple_newtypes! {
    /// Stated virtual memory address.
    ///
    /// See the module documentation for details.
    type Svma = *const u8
    where
        default = ptr::null(),
        display = "{:p}";

    /// Actual virtual memory address.
    ///
    /// See the module documentation for details.
    type Avma = *const u8
    where
        default = ptr::null(),
        display = "{:p}";

    /// Virtual memory bias.
    ///
    /// See the module documentation for details.
    type Bias = isize
    where
        default = 0,
        display = "{:#x}";
}

/// A mapped segment in a shared library.
pub trait Segment: Sized + Debug {
    /// The associated shared library type for this segment.
    type SharedLibrary: SharedLibrary<Segment = Self>;

    /// Get this segment's name.
    fn name(&self) -> &CStr;

    /// Get this segment's stated virtual address of this segment.
    ///
    /// This is the virtual memory address without the bias applied. See the
    /// module documentation for details.
    fn stated_virtual_memory_address(&self) -> Svma;

    /// Get the length of this segment in memory (in bytes).
    fn len(&self) -> usize;

    // Provided methods.

    /// Get this segment's actual virtual memory address.
    ///
    /// This is the virtual memory address with the bias applied. See the module
    /// documentation for details.
    #[inline]
    fn actual_virtual_memory_address(&self, shlib: &Self::SharedLibrary) -> Avma {
        let svma = self.stated_virtual_memory_address();
        let bias = shlib.virtual_memory_bias();
        Avma(unsafe {
            svma.0.offset(bias.0)
        })
    }

    /// Does this segment contain the given address?
    #[inline]
    fn contains_svma(&self, address: Svma) -> bool {
        let start = self.stated_virtual_memory_address().0 as usize;
        let end = start + self.len();
        let address = address.0 as usize;
        start <= address && address < end
    }

    /// Does this segment contain the given address?
    #[inline]
    fn contains_avma(&self, shlib: &Self::SharedLibrary, address: Avma) -> bool {
        let start = self.actual_virtual_memory_address(shlib).0 as usize;
        let end = start + self.len();
        let address = address.0 as usize;
        start <= address && address < end
    }
}

/// A trait representing a shared library that is loaded in this process.
pub trait SharedLibrary: Sized + Debug {
    /// The associated segment type for this shared library.
    type Segment: Segment<SharedLibrary = Self>;

    /// An iterator over a shared library's segments.
    type SegmentIter: Debug + Iterator<Item = Self::Segment>;

    /// Get the name of this shared library.
    fn name(&self) -> &CStr;

    /// Iterate over this shared library's segments.
    fn segments(&self) -> Self::SegmentIter;

    /// Get the bias of this shared library.
    ///
    /// See the module documentation for details.
    fn virtual_memory_bias(&self) -> Bias;

    /// Find all shared libraries in this process and invoke `f` with each one.
    fn each<F, C>(f: F)
        where F: FnMut(&Self) -> C,
              C: Into<IterationControl>;
}

/// Control whether iteration over shared libraries should continue or stop.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum IterationControl {
    /// Stop iteration.
    Break,
    /// Continue iteration.
    Continue,
}

impl From<()> for IterationControl {
    #[inline]
    fn from(_: ()) -> Self {
        IterationControl::Continue
    }
}