1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
/*!
This module implements the linear Kalman filter
*/

use nalgebra::allocator::Allocator;
use nalgebra::base::dimension::DimName;
use nalgebra::{DMatrix, DefaultAllocator, MatrixMN, RealField, VectorN};

/// Implements a Kalman filter.
/// For a detailed explanation, see the excellent book Kalman and Bayesian
/// Filters in Python [1]_. The book applies also for this Rust implementation and all functions
/// should works similar with minor changes due to language differences.
///
///  References
///    ----------
///
///    .. [1] Roger Labbe. "Kalman and Bayesian Filters in Python"
///       https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
///
#[allow(non_snake_case)]
#[derive(Debug)]
pub struct KalmanFilter<F, DimX, DimZ, DimU>
    where
        F: RealField,
        DimX: DimName,
        DimZ: DimName,
        DimU: DimName,
        DefaultAllocator: Allocator<F, DimX>
        + Allocator<F, DimZ>
        + Allocator<F, DimX, DimZ>
        + Allocator<F, DimZ, DimX>
        + Allocator<F, DimZ, DimZ>
        + Allocator<F, DimX, DimX>
        + Allocator<F, DimU>
        + Allocator<F, DimX, DimU>,
{
    /// Current state estimate.
    pub x: VectorN<F, DimX>,
    /// Current state covariance matrix.
    pub P: MatrixMN<F, DimX, DimX>,
    /// Prior (predicted) state estimate.
    pub x_prior: VectorN<F, DimX>,
    /// Prior (predicted) state covariance matrix.
    pub P_prior: MatrixMN<F, DimX, DimX>,
    /// Posterior (updated) state estimate.
    pub x_post: VectorN<F, DimX>,
    ///Posterior (updated) state covariance matrix.
    pub P_post: MatrixMN<F, DimX, DimX>,
    /// Last measurement
    pub z: Option<VectorN<F, DimZ>>,
    /// Measurement noise matrix.
    pub R: MatrixMN<F, DimZ, DimZ>,
    /// MatrixMN<F, DimZ, DimZ>,
    pub Q: MatrixMN<F, DimX, DimX>,
    /// Control transition matrix
    pub B: Option<MatrixMN<F, DimX, DimU>>,
    /// State Transition matrix.
    pub F: MatrixMN<F, DimX, DimX>,
    /// Measurement function.
    pub H: MatrixMN<F, DimZ, DimX>,
    /// Residual of the update step.
    pub y: VectorN<F, DimZ>,
    /// Kalman gain of the update step.
    pub K: MatrixMN<F, DimX, DimZ>,
    /// System uncertainty (P projected to measurement space).
    pub S: MatrixMN<F, DimZ, DimZ>,
    /// Inverse system uncertainty.
    pub SI: MatrixMN<F, DimZ, DimZ>,
    /// Fading memory setting.
    pub alpha_sq: F,
}

#[allow(non_snake_case)]
impl<F, DimX, DimZ, DimU> KalmanFilter<F, DimX, DimZ, DimU>
    where
        F: RealField,
        DimX: DimName,
        DimZ: DimName,
        DimU: DimName,
        DefaultAllocator: Allocator<F, DimX>
        + Allocator<F, DimZ>
        + Allocator<F, DimX, DimZ>
        + Allocator<F, DimZ, DimX>
        + Allocator<F, DimZ, DimZ>
        + Allocator<F, DimX, DimX>
        + Allocator<F, DimU>
        + Allocator<F, DimX, DimU>,
{
    /// Predict next state (prior) using the Kalman filter state propagation equations.
    pub fn predict(
        &mut self,
        u: Option<&VectorN<F, DimU>>,
        B: Option<&MatrixMN<F, DimX, DimU>>,
        F: Option<&MatrixMN<F, DimX, DimX>>,
        Q: Option<&MatrixMN<F, DimX, DimX>>,
    ) {
        let B = if B.is_some() { B } else { self.B.as_ref() };
        let F = F.unwrap_or(&self.F);
        let Q = Q.unwrap_or(&self.Q);

        if B.is_some() && u.is_some() {
            self.x = F * self.x.clone() + B.unwrap() * u.unwrap();
        } else {
            self.x = F * self.x.clone();
        }

        self.P = ((F * self.P.clone()) * F.transpose()) * self.alpha_sq + Q;

        self.x_prior = self.x.clone();
        self.P_prior = self.P.clone();
    }

    /// Add a new measurement (z) to the Kalman filter.
    pub fn update(
        &mut self,
        z: &VectorN<F, DimZ>,
        R: Option<&MatrixMN<F, DimZ, DimZ>>,
        H: Option<&MatrixMN<F, DimZ, DimX>>,
    ) {
        let R = R.unwrap_or(&self.R);
        let H = H.unwrap_or(&self.H);

        self.y = z - H * &self.x;

        let PHT = self.P.clone() * H.transpose();
        self.S = H * &PHT + R;

        self.SI = self.S.clone().try_inverse().unwrap();

        self.K = PHT * &self.SI;

        self.x = &self.x + &self.K * &self.y;

        let I_KH = DMatrix::identity(DimX::dim(), DimX::dim()) - &self.K * H;
        self.P =
            ((I_KH.clone() * &self.P) * I_KH.transpose()) + ((&self.K * R) * &self.K.transpose());

        self.z = Some(z.clone());
        self.x_post = self.x.clone();
        self.P_post = self.P.clone();
    }

    /// Predict state (prior) using the Kalman filter state propagation equations.
    /// Only x is updated, P is left unchanged.
    pub fn predict_steadystate(
        &mut self,
        u: Option<&VectorN<F, DimU>>,
        B: Option<&MatrixMN<F, DimX, DimU>>,
    ) {
        let B = if B.is_some() { B } else { self.B.as_ref() };

        if B.is_some() && u.is_some() {
            self.x = &self.F * &self.x + B.unwrap() * u.unwrap();
        } else {
            self.x = &self.F * &self.x;
        }

        self.x_prior = self.x.clone();
        self.P_prior = self.P.clone();
    }

    /// Add a new measurement (z) to the Kalman filter without recomputing the Kalman gain K,
    /// the state covariance P, or the system uncertainty S.
    pub fn update_steadystate(&mut self, z: &VectorN<F, DimZ>) {
        self.y = z - &self.H * &self.x;
        self.x = &self.x + &self.K * &self.y;

        self.z = Some(z.clone());
        self.x_post = self.x.clone();
        self.P_post = self.P.clone();
    }

    /// Predicts the next state of the filter and returns it without altering the state of the filter.
    pub fn get_prediction(
        &self,
        u: Option<&VectorN<F, DimU>>,
    ) -> (VectorN<F, DimX>, MatrixMN<F, DimX, DimX>) {
        let Q = &self.Q;
        let F = &self.F;
        let P = &self.P;
        let FT = F.transpose();

        let B = self.B.as_ref();
        let x = {
            if B.is_some() && u.is_some() {
                F * &self.x + B.unwrap() * u.unwrap()
            } else {
                F * &self.x
            }
        };

        let P = ((F * P) * FT) * self.alpha_sq + Q;

        (x, P)
    }

    ///  Computes the new estimate based on measurement `z` and returns it without altering the state of the filter.
    pub fn get_update(&self, z: &VectorN<F, DimZ>) -> (VectorN<F, DimX>, MatrixMN<F, DimX, DimX>) {
        let R = &self.R;
        let H = &self.H;
        let P = &self.P;
        let x = &self.x;

        let y = z - H * &self.x;

        let PHT = &(P * H.transpose());

        let S = H * PHT + R;
        let SI = S.try_inverse().unwrap();

        let K = &(PHT * SI);

        let x = x + K * y;

        let I_KH = &(DMatrix::identity(DimX::dim(), DimX::dim()) - (K * H));

        let P = ((I_KH * P) * I_KH.transpose()) + ((K * R) * &K.transpose());

        (x, P)
    }

    /// Returns the residual for the given measurement (z). Does not alter the state of the filter.
    pub fn residual_of(&self, z: &VectorN<F, DimZ>) -> VectorN<F, DimZ> {
        z - (&self.H * &self.x_prior)
    }

    /// Helper function that converts a state into a measurement.
    pub fn measurement_of_state(&self, x: &VectorN<F, DimX>) -> VectorN<F, DimZ> {
        &self.H * x
    }
}

#[allow(non_snake_case)]
impl<F, DimX, DimZ, DimU> Default for KalmanFilter<F, DimX, DimZ, DimU>
    where
        F: RealField,
        DimX: DimName,
        DimZ: DimName,
        DimU: DimName,
        DefaultAllocator: Allocator<F, DimX>
        + Allocator<F, DimZ>
        + Allocator<F, DimX, DimZ>
        + Allocator<F, DimZ, DimX>
        + Allocator<F, DimZ, DimZ>
        + Allocator<F, DimX, DimX>
        + Allocator<F, DimU>
        + Allocator<F, DimX, DimU>,
{
    /// Returns a Kalman filter initialised with default parameters.
    fn default() -> Self {
        let x = VectorN::<F, DimX>::from_element(F::one());
        let P = MatrixMN::<F, DimX, DimX>::identity();
        let Q = MatrixMN::<F, DimX, DimX>::identity();
        let F = MatrixMN::<F, DimX, DimX>::identity();
        let H = MatrixMN::<F, DimZ, DimX>::from_element(F::zero());
        let R = MatrixMN::<F, DimZ, DimZ>::identity();
        let alpha_sq = F::one();

        let z = None;

        let K = MatrixMN::<F, DimX, DimZ>::from_element(F::zero());
        let y = VectorN::<F, DimZ>::from_element(F::one());
        let S = MatrixMN::<F, DimZ, DimZ>::from_element(F::zero());
        let SI = MatrixMN::<F, DimZ, DimZ>::from_element(F::zero());

        let x_prior = x.clone();
        let P_prior = P.clone();

        let x_post = x.clone();
        let P_post = P.clone();

        KalmanFilter {
            x,
            P,
            x_prior,
            P_prior,
            x_post,
            P_post,
            z,
            R,
            Q,
            B: None,
            F,
            H,
            y,
            K,
            S,
            SI,
            alpha_sq,
        }
    }
}

#[cfg(test)]
mod tests {
    use assert_approx_eq::assert_approx_eq;
    use nalgebra::base::Vector1;
    use nalgebra::{U1, U2, Vector2, Matrix2, Matrix1};

    use super::*;

    #[test]
    fn test_univariate_kf_setup() {
        let mut kf: KalmanFilter<f32, U1, U1, U1> = KalmanFilter::<f32, U1, U1, U1>::default();

        for i in 0..1000 {
            let zf = i as f32;
            let z = Vector1::from_vec(vec![zf]);
            kf.predict(None, None, None, None);
            kf.update(&z, None, None);
            assert_approx_eq!(zf, kf.z.clone().unwrap()[0]);
        }
    }

    #[test]
    fn test_1d_reference() {
        let mut kf: KalmanFilter<f64, U2, U1, U1> = KalmanFilter::default();

        kf.x = Vector2::new(2.0, 0.0);
        kf.F = Matrix2::new(
            1.0, 1.0,
            0.0, 1.0,
        );
        kf.H = Vector2::new(1.0, 0.0).transpose();
        kf.P *= 1000.0;
        kf.R = Matrix1::new(5.0);
        kf.Q = Matrix2::repeat(0.0001);

        let mut results = Vec::default();
        for t in 0..100 {
            let z = Vector1::new(t as f64);
            kf.update(&z, None, None);
            kf.predict(None, None, None, None);
            results.push(kf.x.clone());
        }
        // This matches the results from an equivalent filterpy filter.
        assert_approx_eq!(results[0][0], 0.0099502487);
        for i in 1..100 {
            assert_approx_eq!(results[i][0], i as f64 + 1.0, 0.05)
        }
    }
}