1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
#![deny(warnings)]
#![cfg_attr(not(feature = "std"), no_std)]

//! Provides a function and an [`Iterator`] for getting Fibonacci numbers.
//!
//! See the docs on [`Fibonacci::f`] for a function to get a specific F*ₙ* value.
//!
//! See the docs on [`Fibonacci`] for an [`Iterator`].

use core::{fmt::Debug, iter::FusedIterator};

use num::{CheckedAdd, One, Zero};

/// An easy way to get numbers in the Fibonacci series.
///
/// # Examples
///
/// You can just get a number directly (F*ₙ*) using [`Fibonacci::f`]:
/// ```
/// use fibs::Fibonacci;
///
/// let n = Fibonacci::f(9);
/// assert_eq!(Ok(34), n);
/// ```
///
/// Or use [`Fibonacci`] as an [`Iterator`]:
/// ```
/// # use fibs::Fibonacci;
/// #
/// let nums = Fibonacci::default()
///     .skip(3)
///     .take(5)
///     .collect::<Vec<_>>();
/// assert_eq!(
///     vec![2, 3, 5, 8, 13],
///     nums,
/// );
/// ```
///
/// ```
/// # use fibs::Fibonacci;
/// #
/// // The iterator starts with 0, so `.take(10).last()` == F₉
/// let n = Fibonacci::default().take(10).last();
/// assert_eq!(Some(34), n, "F₉ == 34");
/// assert_eq!(Fibonacci::f(9).ok(), n);
/// ```
///
/// If you know you need multiple values, it will be cheaper to reuse an [`Iterator`].
/// ```
/// # use fibs::Fibonacci;
/// #
/// let nums = Fibonacci::default()
///     .enumerate()
///     .filter_map(|(n, value)| match n {
///         3 | 4 | 9 => Some(value),
///         _ => None,
///     })
///     .take(3)
///     .collect::<Vec<u8>>();
/// assert_eq!(
///     vec![
///         Fibonacci::<u8>::f(3).unwrap(),
///         Fibonacci::f(4).unwrap(),
///         Fibonacci::f(9).unwrap(),
///     ],
///     nums,
/// );
/// assert_eq!(
///     vec![2, 3, 34],
///     nums,
/// );
/// ```
///
/// The [`Iterator`] will produce values until the target numeric type would
/// overflow:
/// ```
/// # use fibs::Fibonacci;
/// #
/// let nums: Vec<_> = Fibonacci::<u8>::default().collect();
/// assert_eq!(
///     vec![0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233],
///     nums,
/// );
/// ```
///
/// Wider numeric types result in larger numbers:
/// ```
/// # use fibs::Fibonacci;
/// #
/// let nums = Fibonacci::default().collect::<Vec<u16>>();
/// assert_eq!(
///     vec![0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368],
///     nums,
/// );
/// ```
pub struct Fibonacci<T> {
    previous: Option<T>,
    current: Option<T>,
}

impl<T> Debug for Fibonacci<T>
where
    T: Debug,
{
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        f.debug_struct("Fibonacci")
            .field("previous", &self.previous)
            .field("current", &self.current)
            .finish()
    }
}

impl<T> Copy for Fibonacci<T> where T: Copy {}

impl<T> Clone for Fibonacci<T>
where
    T: Clone,
{
    fn clone(&self) -> Self {
        Self {
            previous: self.previous.clone(),
            current: self.current.clone(),
        }
    }
}

// This does not require that `T` implement `Default`
impl<T> Default for Fibonacci<T> {
    fn default() -> Self {
        Self {
            previous: None,
            current: None,
        }
    }
}

// Unused, for now. But I expect it may be handy in the future.
// impl<T> Fibonacci<T> {
//     fn has_overflowed(&self) -> bool {
//         // If there is no current number, but there is a previous one,
//         // then the last iteration caused an overflow.
//         self.current.is_none() && self.previous.is_some()
//     }
// }

impl<T> Fibonacci<T>
where
    T: Debug + Clone + CheckedAdd + Zero + One,
{
    /// Returns the F*ₙ* value in the Fibonacci series.
    ///
    /// If F*ₙ* would overflow `T`, then `Err` is returned with a tuple
    /// indicating the largest *ₙ* that would *not* overflow `T`, as
    /// well as what that F*ₙ* value is.
    ///
    /// If you know you need multiple values, it will be cheaper to use
    /// this type as an [`Iterator`].
    ///
    /// # Examples
    ///
    /// ```
    /// use fibs::Fibonacci;
    ///
    /// let n = Fibonacci::f(9);
    /// assert_eq!(Ok(34), n);
    /// ```
    ///
    /// If you try to get a number too big for your target numeric type, it'll tell you:
    /// ```
    /// # use fibs::Fibonacci;
    /// #
    /// let n = Fibonacci::<u8>::f(14);
    /// assert_eq!(Err((13, 233)), n);
    ///
    /// // But that `Err` value tell you what the maximum value for your type is.
    /// let n = Fibonacci::<u8>::f(13);
    /// assert_eq!(Ok(233), n);
    /// ```
    ///
    /// Wider target type, larger numbers:
    /// ```
    /// # use fibs::Fibonacci;
    /// #
    /// let n = Fibonacci::<u128>::f(187);
    /// assert_eq!(Err((186, 332825110087067562321196029789634457848)), n);
    ///
    /// let n = Fibonacci::<u128>::f(186);
    /// assert_eq!(Ok(332825110087067562321196029789634457848), n);
    ///
    #[cfg_attr(
        feature = "std",
        doc = r##"
// Or, if you want _really_ big numbers, you can use other types.
let n = Fibonacci::<num::BigUint>::f(1000);
assert_eq!(
    "Ok(43466557686937456435688527675040625802564660517371780402481729089536555417949051890403879840079255169295922593080322634775209689623239873322471161642996440906533187938298969649928516003704476137795166849228875)",
    format!("{:?}", n),
);
"##
    )]
    /// ```
    ///
    /// If you don't care if you asked for a value too high for your target numeric type
    /// and just want a value:
    /// ```
    /// # use fibs::Fibonacci;
    /// #
    /// let n: u8 = Fibonacci::f(9000).unwrap_or_else(|(_max_n, max_val)| max_val);
    /// assert_eq!(233, n);
    /// ```
    pub fn f(n: usize) -> Result<T, (usize, T)> {
        // There's a little bit of trickery here.
        //
        // We need to handle both `n == 0` and `n == usize::MAX`.
        //
        // With `n == 0`, we can't just `Self::default().enumerate().take(n).last()`
        // because it'll take 0 items and `.last()` will return `None`. So we _must_
        // call `.next()` at least once.
        //
        // We can't use `Self::default().enumerate().take(n+1).last()` because that would
        // overflow (panic) if `n == usize::MAX`.
        //
        // This is how we handle both extremes.

        #[inline]
        fn zero_failed<T>() -> T {
            panic!(
                "How could numeric type {} not even be able to get to 0?",
                core::any::type_name::<T>()
            )
        }

        let mut iter = Self::default();

        // TODO: Once stabilized, use `Iterator::advance_by()`
        //       https://github.com/rust-lang/rust/issues/77404
        //       https://doc.rust-lang.org/nightly/core/iter/trait.Iterator.html#method.advance_by
        let mut last = None;
        for i in 0..n {
            last = Some(iter.next().ok_or_else(|| {
                if i == 0 {
                    zero_failed()
                } else {
                    (
                        i - 1,
                        // If we're here, then this _must_ be `Some` because we've
                        // already done at least one iteration and didn't return.
                        last.unwrap(),
                    )
                }
            })?);
        }

        iter.next().ok_or_else(|| {
            if n == 0 {
                zero_failed()
            } else {
                (
                    n - 1,
                    // This _must_ be `Some` because n > 0 and we didn't return
                    // from the above `for` loop.
                    last.unwrap(),
                )
            }
        })
    }
}

impl<T> Iterator for Fibonacci<T>
where
    T: Clone + CheckedAdd + Zero + One,
{
    type Item = T;

    fn next(&mut self) -> Option<Self::Item> {
        match (self.previous.take(), self.current.take()) {
            (None, None) => {
                // The first use of this iterator.

                self.current = Some(T::zero());

                self.current.clone()
            }
            (Some(previous), None) => {
                // If there is no current number, but there is a previous one,
                // then the last iteration caused an overflow.
                self.previous = Some(previous);

                None
            }
            (previous, Some(current)) => {
                self.previous = Some(current.clone());
                self.current = current.checked_add(&previous.unwrap_or_else(T::one));

                self.current.clone()
            }
        }
    }
}

impl<T> FusedIterator for Fibonacci<T> where T: Clone + CheckedAdd + Zero + One {}

#[cfg(test)]
mod test {
    use core::fmt::Debug;

    use num::{CheckedAdd, One, Zero};

    use super::Fibonacci;

    #[test]
    fn sanity() {
        assert_eq!(Ok(0), Fibonacci::f(0));
        assert_eq!(Ok(1), Fibonacci::f(1));
        assert_eq!(Ok(1), Fibonacci::f(2));
        assert_eq!(Ok(2), Fibonacci::f(3));

        assert_eq!(
            Ok(233),
            Fibonacci::<u8>::f(13),
            "Must be able to get the largest value that will fit in the target type"
        );

        let mut f = Fibonacci::default();
        assert_eq!(Some(0_u8), f.next());
        assert_eq!(Some(1), f.next());
        assert_eq!(Some(1), f.next());
        assert_eq!(Some(2), f.next());
        assert_eq!(Some(3), f.next());
        assert_eq!(Some(5), f.next());
        assert_eq!(Some(8), f.next());
        assert_eq!(Some(13), f.next());
        assert_eq!(Some(21), f.next());
        assert_eq!(Some(34), f.next());
        assert_eq!(Some(55), f.next());
        assert_eq!(Some(89), f.next());
        assert_eq!(Some(144), f.next());
        assert_eq!(Some(233), f.next());
        assert_eq!(
            None,
            f.next(),
            "Should have stopped once the target type would overflow"
        );
        assert_eq!(None, f.next(), "Should continue to get None");
        assert_eq!(None, f.next(), "Should continue to get None");
    }

    #[track_caller]
    fn known_max<T>(max_n: usize, expect: T)
    where
        T: Debug + Default + Clone + PartialEq + CheckedAdd + Zero + One,
    {
        assert_eq!(Ok(expect.clone()), Fibonacci::f(max_n));
        assert_eq!(Err((max_n, expect.clone())), Fibonacci::f(max_n + 1));
        assert_eq!(Err((max_n, expect)), Fibonacci::f(usize::MAX));
    }

    macro_rules! known_max {
        ($t:ty, $max_n:expr, $expect:expr) => {
            paste::item! {
                #[test]
                fn [<max_n_ $t>]() {
                    known_max::<$t>($max_n, $expect)
                }
            }
        };
    }

    known_max!(i8, 11, 89);
    known_max!(u8, 13, 233);
    known_max!(i16, 23, 28657);
    known_max!(u16, 24, 46368);
    known_max!(i32, 46, 1836311903);
    known_max!(u32, 47, 2971215073);
    known_max!(i64, 92, 7540113804746346429);
    known_max!(u64, 93, 12200160415121876738);
    known_max!(i128, 184, 127127879743834334146972278486287885163);
    known_max!(u128, 186, 332825110087067562321196029789634457848);

    #[cfg(feature = "std")]
    #[ignore = "Only run this if you've got time on your hands. \
        It takes at least the better part of an hour."]
    #[test]
    fn max_big_uint() {
        assert_eq!(
            Ok(()),
            Fibonacci::<num::BigUint>::f(usize::MAX)
                // Discarding the `BigUint` value because it's too much.
                .map(|_f| ())
                .map_err(|(max_n, _max_big_uint)| { max_n }),
            "Should be able to count to `usize::MAX`"
        );
    }
}