1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
//! ETW Types Parser
//!
//! This module act as a helper to parse the Buffer from an ETW Event


use crate::native::etw_types::EVENT_HEADER_FLAG_32_BIT_HEADER;
use crate::native::etw_types::event_record::EventRecord;
use crate::native::sddl;
use crate::native::tdh;
use crate::native::tdh_types::{Property, PropertyFlags, TdhInType, TdhOutType};
use crate::property::PropertySlice;
use crate::schema::Schema;
use crate::utils;
use std::collections::HashMap;
use std::convert::TryInto;
use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
use std::sync::Mutex;
use widestring::U16CStr;
use windows::core::GUID;

/// Parser module errors
#[derive(Debug)]
pub enum ParserError {
    /// No property has this name
    NotFound,
    /// An invalid type
    InvalidType,
    /// Some properties are not supported by this crate (yet?)
    UnsupportedProperties,
    /// Error parsing
    ParseError,
    /// Length mismatch when parsing a type
    LengthMismatch,
    PropertyError(String),
    /// An error while transforming an Utf-8 buffer into String
    Utf8Error(std::str::Utf8Error),
    /// An error trying to get an slice as an array
    SliceError(std::array::TryFromSliceError),
    /// Represents an internal [SddlNativeError](crate::native::SddlNativeError)
    SddlNativeError(crate::native::SddlNativeError),
    /// Represents an internal [TdhNativeError](crate::native::TdhNativeError)
    TdhNativeError(crate::native::TdhNativeError),
}

impl From<crate::native::TdhNativeError> for ParserError {
    fn from(err: crate::native::TdhNativeError) -> Self {
        ParserError::TdhNativeError(err)
    }
}

impl From<crate::native::SddlNativeError> for ParserError {
    fn from(err: crate::native::SddlNativeError) -> Self {
        ParserError::SddlNativeError(err)
    }
}

impl From<std::str::Utf8Error> for ParserError {
    fn from(err: std::str::Utf8Error) -> Self {
        ParserError::Utf8Error(err)
    }
}

impl From<std::array::TryFromSliceError> for ParserError {
    fn from(err: std::array::TryFromSliceError) -> Self {
        ParserError::SliceError(err)
    }
}

type ParserResult<T> = Result<T, ParserError>;


#[derive(Default)]
/// Cache of the properties we've extracted already
///
/// This is useful because computing their offset can be costly
struct CachedSlices<'schema, 'record> {
    slices: HashMap<String, PropertySlice<'schema, 'record>>,
    /// The user buffer index we've cached up to
    last_cached_offset: usize,
}

/// Represents a Parser
///
/// This structure provides a way to parse an ETW event (= extract its properties).
/// Because properties may have variable length (e.g. strings), a `Parser` is only suited to a single [`EventRecord`]
///
/// # Example
/// ```
/// # use ferrisetw::EventRecord;
/// # use ferrisetw::schema_locator::SchemaLocator;
/// # use ferrisetw::parser::Parser;
/// let my_callback = |record: &EventRecord, schema_locator: &SchemaLocator| {
///     let schema = schema_locator.event_schema(record).unwrap();
///     let parser = Parser::create(record, &schema);
///
///     // There are several ways to define the type requested for `try_parse`
///     // It is possible to use type inference...
///     let property1: Option<String> = parser.try_parse("PropertyName").ok();
///
///     // ...or to use the turbofish operator
///     match parser.try_parse::<u32>("OtherPropertyName") {
///         Ok(_) => println!("OtherPropertyName is a valid u32"),
///         Err(_) => println!("OtherPropertyName is invalid"),
///     }
/// };
/// ```
#[allow(dead_code)]
pub struct Parser<'schema, 'record> {
    properties: &'schema [Property],
    record: &'record EventRecord,
    cache: Mutex<CachedSlices<'schema, 'record>>,
}

impl<'schema, 'record> Parser<'schema, 'record> {
    /// Use the `create` function to create an instance of a Parser
    ///
    /// # Arguments
    /// * `schema` - The [Schema] from the ETW Event we want to parse
    ///
    /// # Example
    /// ```
    /// # use ferrisetw::EventRecord;
    /// # use ferrisetw::schema_locator::SchemaLocator;
    /// # use ferrisetw::parser::Parser;
    /// let my_callback = |record: &EventRecord, schema_locator: &SchemaLocator| {
    ///     let schema = schema_locator.event_schema(record).unwrap();
    ///     let parser = Parser::create(record, &schema);
    /// };
    /// ```
    pub fn create(event_record: &'record EventRecord, schema: &'schema Schema) -> Self {
        Parser {
            record: event_record,
            properties: schema.properties(),
            cache: Mutex::new(CachedSlices::default())
        }
    }

    #[allow(clippy::len_zero)]
    fn find_property_size(&self, property: &Property, remaining_user_buffer: &[u8]) -> ParserResult<usize> {
        // There are several cases
        //  * regular case, where property.len() directly makes sense
        //  * but EVENT_PROPERTY_INFO.length is an union, and (in its lengthPropertyIndex form) can refeer to another field
        //    e.g.: the WinInet provider manifest has fields such as `<data name="Verb" inType="win:AnsiString" length="_VerbLength"/>`
        //    In this case, we defer to TDH to know the right length.

        if property
            .flags
            .contains(PropertyFlags::PROPERTY_PARAM_LENGTH) == false
            && (property.len() > 0)
        {
            let size = if property.in_type() != TdhInType::InTypePointer {
                property.len()
            } else {
                // There is an exception regarding pointer size though
                // When reading captures, we should take care of the pointer size at the _source_, rather than the current architecture's pointer size.
                // Note that a 32-bit program on a 64-bit OS would still send 32-bit pointers
                if (self.record.event_flags() & EVENT_HEADER_FLAG_32_BIT_HEADER) != 0 {
                    4
                } else {
                    8
                }
            };
            return Ok(size);
        }


        if property.flags.is_empty() {
            if property.len() > 0 {
                return Ok(property.len())
            } else {
                // Length is not set. We'll have to ask TDH for the right length.
                // However, before doing so, there are some cases where we could determine ourselves.
                // The following _very_ common property types can be short-circuited to prevent the expensive call.
                // (that's taken from krabsetw)

                // Strings that appear at the end of a record may not be null-terminated.
                // If a string is null-terminated, propertyLength includes the null character.
                // If a string is not-null terminated, propertyLength includes all bytes up
                // to the end of the record buffer.
                if property.flags.contains(PropertyFlags::PROPERTY_STRUCT) == false
                && property.out_type() == TdhOutType::OutTypeString {
                    match property.in_type() {
                        TdhInType::InTypeAnsiString => {
                            let mut l = 0;
                            for char in remaining_user_buffer {
                                if char == &0 {
                                    l += 1; // include the final null byte
                                    break;
                                }
                                l += 1;
                            }
                            return Ok(l)
                        },

                        TdhInType::InTypeUnicodeString => {
                            let mut l = 0;
                            for bytes in remaining_user_buffer.chunks_exact(2) {
                                if bytes[0] == 0 && bytes[1] == 0 {
                                    l += 2;
                                    break;
                                }
                                l += 2;
                            }
                            return Ok(l);
                        }

                        _ => (),
                    }
                }
            }

        }

        Ok(tdh::property_size(self.record, &property.name)? as usize)
    }

    fn find_property(&self, name: &str) -> ParserResult<PropertySlice<'schema, 'record>> {
        let mut cache = self.cache.lock().unwrap();

        // We may have extracted this property already
        if let Some(p) = cache.slices.get(name) {
            return Ok(*p);
        }

        let last_cached_property = cache.slices.len();
        let properties_not_parsed_yet = match self.properties.get(last_cached_property..) {
            Some(s) => s,
            // If we've parsed every property already, that means no property matches this name
            None => return Err(ParserError::NotFound)
        };

        for property in properties_not_parsed_yet {
            let remaining_user_buffer = match self.record.user_buffer().get(cache.last_cached_offset..) {
                None => return Err(ParserError::PropertyError("Invalid buffer bounds".to_owned())),
                Some(s) => s,
            };

            let prop_size = self.find_property_size(property, remaining_user_buffer)?;
            let property_buffer = match remaining_user_buffer.get(..prop_size) {
                None => return Err(ParserError::PropertyError("Property length out of buffer bounds".to_owned())),
                Some(s) => s,
            };

            let prop_slice = PropertySlice {
                property,
                buffer: property_buffer
            };
            cache.slices.insert(String::clone(&property.name), prop_slice);
            cache.last_cached_offset += prop_size;

            if property.name == name {
                return Ok(prop_slice);
            }
        }

        Err(ParserError::NotFound)
    }

    /// Return a property from the event, or an error in case the parsing failed.
    ///
    /// You must explicitly define `T`, the type you want to parse the property into.<br/>
    /// In case this type is not compatible with the ETW type, [`ParserError::InvalidType`] is returned.
    pub fn try_parse<T>(&self, name: &str) -> ParserResult<T>
    where Parser<'schema, 'record>: private::TryParse<T>
    {
        use crate::parser::private::TryParse;
        self.try_parse_impl(name)
    }
}



mod private {
    use super::*;

    /// Trait to try and parse a type
    ///
    /// This trait has to be implemented in order to be able to parse a type we want to retrieve from
    /// within an Event.
    ///
    /// An implementation for most of the Primitive Types is created by using a Macro, any other needed type
    /// requires this trait to be implemented
    pub trait TryParse<T> {
        /// Implement the `try_parse` function to provide a way to Parse `T` from an ETW event or
        /// return an Error in case the type `T` can't be parsed
        ///
        /// # Arguments
        /// * `name` - Name of the property to be found in the Schema
        fn try_parse_impl(&self, name: &str) -> Result<T, ParserError>;
    }
}

macro_rules! impl_try_parse_primitive {
    ($T:ident) => {
        impl private::TryParse<$T> for Parser<'_, '_> {
            fn try_parse_impl(&self, name: &str) -> ParserResult<$T> {
                let prop_slice = self.find_property(name)?;

                // TODO: Check In and Out type and do a better type checking
                if std::mem::size_of::<$T>() != prop_slice.buffer.len() {
                    return Err(ParserError::LengthMismatch);
                }
                Ok($T::from_ne_bytes(prop_slice.buffer.try_into()?))
            }
        }
    };
}

impl_try_parse_primitive!(u8);
impl_try_parse_primitive!(i8);
impl_try_parse_primitive!(u16);
impl_try_parse_primitive!(i16);
impl_try_parse_primitive!(u32);
impl_try_parse_primitive!(i32);
impl_try_parse_primitive!(u64);
impl_try_parse_primitive!(i64);
impl_try_parse_primitive!(usize);
impl_try_parse_primitive!(isize);

/// The `String` impl of the `TryParse` trait should be used to retrieve the following [TdhInTypes]:
///
/// * InTypeUnicodeString
/// * InTypeAnsiString
/// * InTypeCountedString
/// * InTypeGuid
///
/// On success a `String` with the with the data from the `name` property will be returned
///
/// # Arguments
/// * `name` - Name of the property to be found in the Schema
///
/// # Example
/// ```
/// # use ferrisetw::EventRecord;
/// # use ferrisetw::schema_locator::SchemaLocator;
/// # use ferrisetw::parser::Parser;
/// let my_callback = |record: &EventRecord, schema_locator: &SchemaLocator| {
///     let schema = schema_locator.event_schema(record).unwrap();
///     let parser = Parser::create(record, &schema);
///     let image_name: String = parser.try_parse("ImageName").unwrap();
/// };
/// ```
///
/// [TdhInTypes]: TdhInType
impl private::TryParse<String> for Parser<'_, '_> {
    fn try_parse_impl(&self, name: &str) -> ParserResult<String> {
        let prop_slice = self.find_property(name)?;

        // TODO: Handle errors and type checking better
        let res = match prop_slice.property.in_type() {
            TdhInType::InTypeUnicodeString => {
                let wide_vec = bytes_to_u16_vec(prop_slice.buffer)?;

                match U16CStr::from_slice(&wide_vec) {
                    Err(_) => {
                        return Err(ParserError::PropertyError(
                            "Widestring is not null-terminated".into(),
                        ))
                    }
                    Ok(s) => s.to_string_lossy(),
                }
            }
            TdhInType::InTypeAnsiString => std::str::from_utf8(prop_slice.buffer)?
                .trim_matches(char::default())
                .to_string(),
            TdhInType::InTypeSid => {
                sddl::convert_sid_to_string(prop_slice.buffer.as_ptr() as *const _)?
            }
            TdhInType::InTypeCountedString => unimplemented!(),
            _ => return Err(ParserError::InvalidType),
        };

        Ok(res)
    }
}

impl private::TryParse<GUID> for Parser<'_, '_> {
    fn try_parse_impl(&self, name: &str) -> Result<GUID, ParserError> {
        let prop_slice = self.find_property(name)?;

        let guid_string = utils::parse_utf16_guid(prop_slice.buffer);

        if guid_string.len() != 36 {
            return Err(ParserError::LengthMismatch);
        }

        Ok(GUID::from(guid_string.as_str()))
    }
}

impl private::TryParse<IpAddr> for Parser<'_, '_> {
    fn try_parse_impl(&self, name: &str) -> ParserResult<IpAddr> {
        let prop_slice = self.find_property(name)?;

        if prop_slice.property.out_type() != TdhOutType::OutTypeIpv4
            && prop_slice.property.out_type() != TdhOutType::OutTypeIpv6
        {
            return Err(ParserError::InvalidType);
        }

        // Hardcoded values for now
        let res = match prop_slice.property.len() {
            16 => {
                let tmp: [u8; 16] = prop_slice.buffer.try_into()?;
                IpAddr::V6(Ipv6Addr::from(tmp))
            }
            4 => {
                let tmp: [u8; 4] = prop_slice.buffer.try_into()?;
                IpAddr::V4(Ipv4Addr::from(tmp))
            }
            _ => return Err(ParserError::LengthMismatch),
        };

        Ok(res)
    }
}

#[derive(Clone, Default, Debug)]
pub struct Pointer(usize);

impl std::ops::Deref for Pointer {
    type Target = usize;

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl std::ops::DerefMut for Pointer {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.0
    }
}

impl std::fmt::LowerHex for Pointer {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let val = self.0;

        std::fmt::LowerHex::fmt(&val, f) // delegate to u32/u64 implementation
    }
}

impl std::fmt::UpperHex for Pointer {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let val = self.0;

        std::fmt::UpperHex::fmt(&val, f) // delegate to u32/u64 implementation
    }
}

impl std::fmt::Display for Pointer {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let val = self.0;

        std::fmt::Display::fmt(&val, f) // delegate to u32/u64 implementation
    }
}

impl private::TryParse<Pointer> for Parser<'_, '_> {
    fn try_parse_impl(&self, name: &str) -> ParserResult<Pointer> {
        let prop_slice = self.find_property(name)?;

        let mut res = Pointer::default();
        if prop_slice.buffer.len() == std::mem::size_of::<u32>() {
            res.0 = private::TryParse::<u32>::try_parse_impl(self, name)? as usize;
        } else {
            res.0 = private::TryParse::<u64>::try_parse_impl(self, name)? as usize;
        }

        Ok(res)
    }
}

impl private::TryParse<Vec<u8>> for Parser<'_, '_> {
    fn try_parse_impl(&self, name: &str) -> Result<Vec<u8>, ParserError> {
        let prop_slice = self.find_property(name)?;
        Ok(prop_slice.buffer.to_vec())
    }
}

// TODO: Implement SocketAddress
// TODO: Study if we can use primitive types for HexInt64, HexInt32 and Pointer

fn bytes_to_u16_vec(input: &[u8]) -> ParserResult<Vec<u16>> {
    if input.len() % 2 != 0 {
        return Err(ParserError::PropertyError(
            "odd length in bytes for a widestring".into(),
        ));
    }

    let mut res = Vec::with_capacity(input.len() / 2);
    for wide_slice in input.chunks_exact(2) {
        let two_bytes = wide_slice.try_into().unwrap();
        res.push(u16::from_le_bytes(two_bytes));
    }

    Ok(res)
}


#[cfg(test)]
mod test {
    use super::bytes_to_u16_vec;

    #[test]
    fn test_bytes_to_u16_vec() {
        let unicode_array: [u8; 14] =     [0xd8,0, 0x20,0, 0x8c,1, 0xeb,0, 0x61,0, 0x72,0, 0,0];
        let expected_u16_array: [u16;7] = [0xd8,   0x20,   0x18c,  0xeb,   0x61,   0x72,   0];

        let u16_slice = bytes_to_u16_vec(&unicode_array).unwrap();
        let decoded_string = widestring::ucstr::U16CStr::from_slice(&u16_slice).unwrap().to_string().unwrap();

        assert_eq!(bytes_to_u16_vec(&unicode_array).unwrap(), &expected_u16_array);
        assert_eq!(&decoded_string, "Ø ƌëar");


        let empty_array = [];
        assert_eq!(bytes_to_u16_vec(&empty_array).unwrap(), &[]);


        let odd_length_array = [1,2,3];
        assert!(bytes_to_u16_vec(&odd_length_array).is_err());
    }
}