MaterialEllipticOperator

Struct MaterialEllipticOperator 

Source
pub struct MaterialEllipticOperator<'a, Material>(/* private fields */);
Expand description

A wrapper that turns any hyper elastic material into an elliptic operator for use with fenris assembly operations.

The wrapper assumes a displacement-based formulation, i.e. that the solution field is the displacement $\vec u (\vec X) = \vec x(\vec X) - \vec X$. In other words, the nodal weights should correspond to displacements, not deformed positions. Alternatively, you may transform deformed positions to displacements as a preprocessing step before handing off the resulting displacements to assembly functionality relying on this operator wrapper.

This implies the following relations:

$$ \begin{aligned} \vec F &= \vec I + (\nabla \vec u)^T, \\ \vec P (\vec F) &= g^T (\nabla \vec u), \\ \mathcal{C}_{\vec P}(\vec F, \vec a, \vec b) &= \mathcal{C}_g(\nabla \vec u, \vec a, \vec b). \\ \end{aligned} $$

Implementations§

Source§

impl<'a, Material> MaterialEllipticOperator<'a, Material>

Source

pub fn new(material: &'a Material) -> Self

Trait Implementations§

Source§

impl<'a, T, GeometryDim, Material> EllipticContraction<T, GeometryDim> for MaterialEllipticOperator<'a, Material>
where T: Real, GeometryDim: SmallDim, Material: HyperelasticMaterial<T, GeometryDim>, DefaultAllocator: DimAllocator<T, GeometryDim>,

Source§

fn contract( &self, u_grad: &OMatrix<T, GeometryDim, GeometryDim>, a: &OVector<T, GeometryDim>, b: &OVector<T, GeometryDim>, parameters: &Self::Parameters, ) -> OMatrix<T, Self::SolutionDim, Self::SolutionDim>

Compute $ \mathcal{C}_g(\nabla u, a, b)$ with the given parameters.
Source§

fn symmetry(&self) -> Symmetry

Whether the contraction operator is symmetric. Read more
Source§

fn accumulate_contractions_into( &self, output: DMatrixViewMut<'_, T>, alpha: T, u_grad: &OMatrix<T, GeometryDim, Self::SolutionDim>, a: DVectorView<'_, T>, b: DVectorView<'_, T>, parameters: &Self::Parameters, )

Compute the contraction for a number of vectors at the same time, with the given parameters. Read more
Source§

impl<'a, T, GeometryDim, Material> EllipticEnergy<T, GeometryDim> for MaterialEllipticOperator<'a, Material>
where T: Real, GeometryDim: SmallDim, Material: HyperelasticMaterial<T, GeometryDim>, DefaultAllocator: DimAllocator<T, GeometryDim>,

Source§

fn compute_energy( &self, u_grad: &OMatrix<T, GeometryDim, GeometryDim>, parameters: &Self::Parameters, ) -> T

Source§

impl<'a, T, GeometryDim, Material> EllipticOperator<T, GeometryDim> for MaterialEllipticOperator<'a, Material>
where T: Real, GeometryDim: SmallDim, Material: HyperelasticMaterial<T, GeometryDim>, DefaultAllocator: DimAllocator<T, GeometryDim>,

Source§

fn compute_elliptic_operator( &self, u_grad: &OMatrix<T, GeometryDim, GeometryDim>, parameters: &Self::Parameters, ) -> OMatrix<T, GeometryDim, Self::SolutionDim>

Compute the elliptic operator $g = g(\nabla u)$ with the provided operator parameters.
Source§

fn compute_elliptic_operator_transpose( &self, u_grad: &OMatrix<T, GeometryDim, Self::SolutionDim>, parameters: &Self::Parameters, ) -> OMatrix<T, Self::SolutionDim, GeometryDim>

Compute the transpose $g^T$ of the elliptic operator $g$. Read more
Source§

impl<'a, T, GeometryDim, Material> Operator<T, GeometryDim> for MaterialEllipticOperator<'a, Material>
where T: Real, GeometryDim: SmallDim, Material: HyperelasticMaterial<T, GeometryDim>, DefaultAllocator: DimAllocator<T, GeometryDim>,

Source§

type SolutionDim = GeometryDim

Source§

type Parameters = <Material as HyperelasticMaterial<T, GeometryDim>>::Parameters

The parameters associated with the operator. Read more

Auto Trait Implementations§

§

impl<'a, Material> Freeze for MaterialEllipticOperator<'a, Material>

§

impl<'a, Material> RefUnwindSafe for MaterialEllipticOperator<'a, Material>
where Material: RefUnwindSafe,

§

impl<'a, Material> Send for MaterialEllipticOperator<'a, Material>
where Material: Sync,

§

impl<'a, Material> Sync for MaterialEllipticOperator<'a, Material>
where Material: Sync,

§

impl<'a, Material> Unpin for MaterialEllipticOperator<'a, Material>

§

impl<'a, Material> UnwindSafe for MaterialEllipticOperator<'a, Material>
where Material: RefUnwindSafe,

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.