1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
use feattle_core::{BoxError, Feattles};
use std::sync::{Arc, Weak};
use std::time::Duration;
use tokio::task::JoinHandle;
use tokio::time::sleep;

/// Spawn a tokio task to poll [`Feattles::reload()`] continuously
///
/// A feattles instance will only ask the persistence layer for the current values when the
/// [`Feattles::reload()`] method is called. This type would do so regularly for you, until the
/// [`Feattles`] instance is dropped.
///
/// # Example
/// ```
/// # #[tokio::main]
/// # async fn main() {
/// use feattle_core::{feattles, Feattles};
/// use feattle_sync::BackgroundSync;
/// use feattle_core::persist::NoPersistence;
/// use std::sync::Arc;
///
/// feattles! {
///     struct MyToggles {
///         a: bool,
///     }
/// }
///
/// // `NoPersistence` here is just a mock for the sake of the example
/// let toggles = Arc::new(MyToggles::new(Arc::new(NoPersistence)));
///
/// BackgroundSync::new(&toggles).start().await;
/// # }
/// ```
#[derive(Debug)]
pub struct BackgroundSync<F> {
    ok_interval: Duration,
    err_interval: Duration,
    feattles: Weak<F>,
}

impl<F> BackgroundSync<F> {
    /// Create a new poller for the given feattles instance. It will call [`Arc::downgrade()`] to
    /// detect when the value is dropped.
    pub fn new(feattles: &Arc<F>) -> Self {
        BackgroundSync {
            ok_interval: Duration::from_secs(30),
            err_interval: Duration::from_secs(60),
            feattles: Arc::downgrade(feattles),
        }
    }

    /// Set both [`Self::ok_interval`] and [`Self::err_interval`]
    pub fn interval(&mut self, value: Duration) -> &mut Self {
        self.ok_interval = value;
        self.err_interval = value;
        self
    }

    /// After a successful reload, will wait for this long before starting the next one. By default
    /// this is 30 seconds.
    pub fn ok_interval(&mut self, value: Duration) -> &mut Self {
        self.ok_interval = value;
        self
    }

    /// After a failed reload, will wait for this long before starting the next one. By default
    /// this is 60 seconds.
    pub fn err_interval(&mut self, value: Duration) -> &mut Self {
        self.err_interval = value;
        self
    }
}

impl<F: Feattles + Sync + Send + 'static> BackgroundSync<F> {
    /// Spawn a new tokio task, returning its handle. Usually you do not want to anything with the
    /// returned handle, since the task will run by itself until the feattles instance gets dropped.
    ///
    /// Operational logs are generated with the crate [`log`].
    #[deprecated = "use `start_sync()` that will try a first update right away"]
    pub fn spawn(self) -> JoinHandle<()> {
        tokio::spawn(async move {
            while let Some(feattles) = self.feattles.upgrade() {
                match feattles.reload().await {
                    Ok(()) => {
                        log::debug!("Feattles updated");
                        sleep(self.ok_interval).await;
                    }
                    Err(err) => {
                        log::warn!("Failed to sync Feattles: {:?}", err);
                        sleep(self.err_interval).await;
                    }
                }
            }

            log::info!("Stop background sync since Feattles got dropped")
        })
    }

    /// Start the sync operation by executing an update right now and then spawning a new tokio
    /// task.
    ///
    /// This call will block until the first update returns. If it fails, the obtained error will be
    /// returned.
    ///
    /// Note that the return type is `Option<_>` and not `Result<_>`, to avoid confusion: even if
    /// the first update fails, the sync process will continue in the background.
    ///
    /// The tokio task will run by itself until the feattles instance gets dropped.
    ///
    /// Operational logs are generated with the crate [`log`].
    pub async fn start(self) -> Option<BoxError> {
        let feattles = self.feattles.upgrade()?;

        let first_error = feattles.reload().await.err();
        let first_sleep = match &first_error {
            Some(err) => {
                log::warn!("Failed to sync Feattles: {:?}", err);
                self.err_interval
            }
            None => {
                log::debug!("Feattles updated");
                self.ok_interval
            }
        };

        tokio::spawn(async move {
            sleep(first_sleep).await;

            while let Some(feattles) = self.feattles.upgrade() {
                match feattles.reload().await {
                    Ok(()) => {
                        log::debug!("Feattles updated");
                        sleep(self.ok_interval).await;
                    }
                    Err(err) => {
                        log::warn!("Failed to sync Feattles: {:?}", err);
                        sleep(self.err_interval).await;
                    }
                }
            }

            log::info!("Stop background sync since Feattles got dropped")
        });

        first_error
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use async_trait::async_trait;
    use feattle_core::persist::{CurrentValues, Persist, ValueHistory};
    use feattle_core::{feattles, BoxError, Feattles};
    use parking_lot::Mutex;
    use tokio::time;
    use tokio::time::Instant;

    #[derive(Debug, thiserror::Error)]
    #[error("Some error")]
    struct SomeError;

    #[derive(Clone)]
    struct MockPersistence {
        call_instants: Arc<Mutex<Vec<Instant>>>,
    }

    impl MockPersistence {
        fn new() -> Self {
            MockPersistence {
                call_instants: Arc::new(Mutex::new(vec![Instant::now()])),
            }
        }

        fn call_intervals(&self) -> Vec<Duration> {
            self.call_instants
                .lock()
                .windows(2)
                .map(|instants| instants[1] - instants[0])
                .collect()
        }
    }

    #[async_trait]
    impl Persist for MockPersistence {
        async fn save_current(&self, _value: &CurrentValues) -> Result<(), BoxError> {
            unimplemented!()
        }
        async fn load_current(&self) -> Result<Option<CurrentValues>, BoxError> {
            let mut call_instants = self.call_instants.lock();
            call_instants.push(Instant::now());
            if call_instants.len() == 3 {
                // Second call returns an error
                Err(Box::new(SomeError))
            } else {
                Ok(None)
            }
        }
        async fn save_history(&self, _key: &str, _value: &ValueHistory) -> Result<(), BoxError> {
            unimplemented!()
        }
        async fn load_history(&self, _key: &str) -> Result<Option<ValueHistory>, BoxError> {
            unimplemented!()
        }
    }

    #[tokio::test]
    async fn test() {
        feattles! {
            struct MyToggles { }
        }

        time::pause();

        let persistence = Arc::new(MockPersistence::new());
        let toggles = Arc::new(MyToggles::new(persistence.clone()));
        BackgroundSync::new(&toggles).start().await;

        // First update: success
        // Second update after 30s: fails
        // Third update after 60s: success
        // Forth update after 30s
        loop {
            let call_intervals = persistence.call_intervals();
            if call_intervals.len() == 4 {
                assert_eq!(call_intervals[0].as_secs_f32().round() as i32, 0);
                assert_eq!(call_intervals[1].as_secs_f32().round() as i32, 30);
                assert_eq!(call_intervals[2].as_secs_f32().round() as i32, 60);
                assert_eq!(call_intervals[3].as_secs_f32().round() as i32, 30);
                break;
            }
            tokio::task::yield_now().await;
            time::sleep(Duration::from_millis(100)).await;
        }

        // No more updates
        drop(toggles);
        for _ in 0..5 {
            tokio::task::yield_now().await;
        }
        assert_eq!(persistence.call_intervals().len(), 4);
    }
}