1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
//! Full Domain Hash
//!
//! A Full Domain Hash (FDH) is a cryptographic construction that extends the size of a hash digest to an arbitrary length. For example, SHA256 can be expanded to 1024 bits instead of the usual 256 bits.
//!
//! We construct an FDH by computing a number of cycles where `cycles=(target length)/(digest length) + 1`. We then compute `FDH(M) = HASH(M||0) || HASH(M||1) || ... || HASH(M||cycles−1)`, where `HASH` is any hash function, `M` is the message, `||` denotes concatenation, and numerical values are single byte `u8`.
//!
//! FDHs are usually used with an RSA signature scheme where the target length is the size of the key. See [https://en.wikipedia.org/wiki/Full_Domain_Hash](https://en.wikipedia.org/wiki/Full_Domain_Hash)
//!
//! This crate makes extensive use of the [`digest`](/digest) crate's cryptograhic hash traits, so most useful methods are implemented as part of `digest` traits. These traits are re-exported for convenience. See [https://github.com/RustCrypto/hashes](https://github.com/RustCrypto/hashes) for a list of compatible hashes.
//!
//! # Example
//! ```
//! use sha2::Sha256;
//! use fdh::{FullDomainHash, Input, VariableOutput};
//!   
//! // Expand SHA256 from 256 bits to 1024 bits.
//! let output_bits = 1024;
//! let output_bytes = 1024 / 8;
//! let mut hasher = FullDomainHash::<Sha256>::new(output_bytes).unwrap();
//! hasher.input(b"ATTACK AT DAWN");
//! let result = hasher.vec_result();
//! ```
//!
//! # `no_std`
//!
//! This crate also supports `no_std`.
//!
//! ```
//! #![no_std]
//! use sha2::Sha256;
//! use fdh::{FullDomainHash, Input, ExtendableOutput, XofReader};
//!   
//! // Expand SHA256 from 256 bits to 512 bits (and beyond!), reading it in 16 byte chunks.
//! let mut hasher = FullDomainHash::<Sha256>::default();
//! hasher.input(b"ATTACK AT DAWN");
//! let mut reader = hasher.xof_result();
//! let mut read_buf = <[u8; 16]>::default();
//!
//! // Read the first 16 bytes into read_buf
//! reader.read(&mut read_buf);
//!
//! // Read the second 16 bytes into read_buf
//! reader.read(&mut read_buf);
//!
//! // If we want, we can just keep going, reading as many bits as we want indefinitely.
//! reader.read(&mut read_buf);
//! reader.read(&mut read_buf);
//! ```
//!
//!
//!
//! # Restricted Domain
//!
//! This crate also supports getting a digest that is within a specific domain. It follows an algorithim like so:
//!
//! ```pseudocode
//! fn digest_in_domain(message, iv):
//!    digest = fdh(message, iv)
//!    while not digest.in_domain():
//!        iv++
//!        digest = fdh(message, iv)
//!    return digest, iv
//! ```
//!
//! The method `results_in_domain()` is provided to accomplish this. The helper methods `results_between()`, `results_lt()`, `results_gt()` are provided for the common case where the digest must be in a certain range.
//!
//! An example that produces a digest that is odd:
//!
//! ```rust
//! use sha2::Sha512;
//! use fdh::{FullDomainHash, Input, VariableOutput};
//! use num_bigint::BigUint;
//! use num_integer::Integer;
//!
//! // Get a full domain hash that is odd
//! let mut hasher = FullDomainHash::<Sha512>::new(64).unwrap();
//! hasher.input(b"ATTACKATDAWN");
//!
//! fn digest_is_odd(digest: &BigUint) -> bool {
//!   digest.is_odd()
//! }
//! let iv = 0;
//!
//! let (digest, iv) = hasher.results_in_domain(iv, digest_is_odd).unwrap();
//! ```

#![no_std]
use digest::Digest;
pub use digest::{ExtendableOutput, Input, Reset, VariableOutput, XofReader};
use failure::Fail;
use generic_array::GenericArray;
use num_bigint::BigUint;

#[cfg(feature = "std")]
extern crate std;

#[cfg(feature = "std")]
pub mod movingwindow;

#[derive(Clone, Debug, Default)]
pub struct FullDomainHash<H: Digest> {
    output_size: usize,
    inner_hash: H,
    current_suffix: u8,
    read_buf: GenericArray<u8, H::OutputSize>, // Used for digest::XofReader -- TODO split this out
    read_buf_pos: usize,                       // Used for digest::XofReader -- TODO split this out
}

/// Error types
#[cfg(feature = "std")]
#[derive(Debug, Fail)]
pub enum Error {
    #[fail(display = "fdh: Cannot find IV for a digest with the desired range")]
    NoDigestWithin,
}

impl<H: Digest + Clone> FullDomainHash<H> {
    /// Create new hasher instance with the given output size and initialization vector.
    ///
    /// The final hash will be `FDH(M) = HASH(M||IV) || HASH(M||IV+1) || ... || HASH(M||IV+N)`
    /// where `HASH` is any hash function, `M` is the message, `||` denotes concatenation, `IV` is the initialization vector, and `N` is the number of cycles requires for the output length.
    ///
    /// If the initialization vector is large enough, it will "wrap around" from `xFF` to `x00` using modular addition.
    pub fn with_iv(output_size: usize, iv: u8) -> Self {
        FullDomainHash {
            output_size,
            inner_hash: H::new(),
            current_suffix: iv,
            read_buf: GenericArray::default(),
            read_buf_pos: 0,
        }
    }

    // Utility function for reader
    fn fill_buffer(&mut self) {
        // If we are at position 0, then finalize the hash and read into the local buffer
        if self.read_buf_pos == 0 {
            let mut inner_hash = self.inner_hash.clone();

            // Append the final x00, x01, x02 etc.
            inner_hash.input([self.current_suffix]);

            // Fill the buffer
            self.read_buf = inner_hash.result();

            // Increment the current suffix
            self.current_suffix = self.current_suffix.wrapping_add(1);
        }
    }

    fn read_buf_pos_mod_add(&mut self, rhs: usize) {
        if rhs > self.read_buf.len() {
            panic!("fdh: Cannot increment buffer position a larger amount than the buffer itself. This is a bug, please report it at https://github.com/phayes/fdh-rs/issues");
        }
        if self.read_buf_pos + rhs > self.read_buf.len() - 1 {
            self.read_buf_pos = rhs - (self.read_buf.len() - self.read_buf_pos);
        } else {
            self.read_buf_pos += rhs;
        }
    }

    /// Search for a digest value that is numerically within the provided range by iterating over initial suffixes. Return the resulting digest and initialization value.
    ///
    /// # Example
    /// ```rust
    /// use sha2::Sha512;
    /// use fdh::{FullDomainHash, Input, VariableOutput};
    /// use num_bigint::BigUint;
    ///
    /// // Get a full domain hash that is a mere 8 bytes (64 bits) long.
    /// let mut hasher = FullDomainHash::<Sha512>::new(8).unwrap();
    /// hasher.input(b"ATTACKATDAWN");
    /// let min = BigUint::from(10u64);
    /// let max = BigUint::from(5_000_000_000_000_000_000u64); // about half of u64 max.
    ///
    /// let (digest, iv) = hasher.results_between(0, &min, &max).unwrap();
    /// ```
    #[cfg(feature = "std")]
    pub fn results_between(
        self,
        initial_iv: u8,
        min: &BigUint,
        max: &BigUint,
    ) -> Result<(std::vec::Vec<u8>, u8), Error> {
        self.results_in_domain(initial_iv, |check| check < max && check > min)
    }

    /// Get a digest value that is less than the specified maximum value.
    ///
    /// This is useful when the full-domain-hash needs to be less than some value, for example modulus `n` in RSA-FDH.
    #[cfg(feature = "std")]
    pub fn results_lt(
        self,
        initial_iv: u8,
        max: &BigUint,
    ) -> Result<(std::vec::Vec<u8>, u8), Error> {
        self.results_in_domain(initial_iv, |check| check < max)
    }

    /// Get a digest value that is more than the specified maximum value.
    #[cfg(feature = "std")]
    pub fn results_gt(
        self,
        initial_iv: u8,
        min: &BigUint,
    ) -> Result<(std::vec::Vec<u8>, u8), Error> {
        self.results_in_domain(initial_iv, |check| check > min)
    }

    /// Get a digest value that is within the domain specified by the passed closure.
    ///
    /// # Example
    /// ```rust
    /// use sha2::Sha512;
    /// use fdh::{FullDomainHash, Input, VariableOutput};
    /// use num_bigint::BigUint;
    /// use num_integer::Integer;
    ///
    /// // Get a full domain hash that is odd
    /// let mut hasher = FullDomainHash::<Sha512>::new(64).unwrap();
    /// hasher.input(b"ATTACKATDAWN");
    ///
    /// let (digest, iv) = hasher.results_in_domain(0, |check_digest| check_digest.is_odd()).unwrap();
    /// ```
    pub fn results_in_domain<C: Fn(&BigUint) -> bool>(
        self,
        initial_iv: u8,
        value_in_domain: C,
    ) -> Result<(std::vec::Vec<u8>, u8), Error> {
        let mut current_suffix = initial_iv;

        loop {
            let mut hasher = FullDomainHash {
                output_size: self.output_size,
                inner_hash: self.inner_hash.clone(),
                current_suffix: current_suffix,
                read_buf: GenericArray::default(),
                read_buf_pos: 0,
            };
            hasher.current_suffix = current_suffix;
            let res = VariableOutput::vec_result(hasher);
            if value_in_domain(&BigUint::from_bytes_be(&res)) {
                return Ok((res, current_suffix));
            } else {
                current_suffix = current_suffix.wrapping_add(1);

                // We've exausted the search space, give up.
                if current_suffix == initial_iv {
                    return Err(Error::NoDigestWithin);
                }
            }
        }
    }
}

#[cfg(feature = "std")]
impl<H: Digest + Clone> VariableOutput for FullDomainHash<H> {
    /// Create new hasher instance with the given output size.
    fn new(output_size: usize) -> Result<Self, digest::InvalidOutputSize> {
        Ok(FullDomainHash::with_iv(output_size, 0))
    }

    /// Get output size of the hasher instance.
    fn output_size(&self) -> usize {
        self.output_size
    }

    /// Retrieve result via closure and consume hasher.
    ///
    /// Closure is guaranteed to be called, length of the buffer passed to it will be equal to output_size.
    ///
    /// You should probably use [`vec_result()`](#method.vec_result) instead.
    fn variable_result<F: FnOnce(&[u8])>(mut self, f: F) {
        let num_inner = self.output_size / H::output_size();
        let remainder = self.output_size % H::output_size();

        let mut buf = std::vec::Vec::<u8>::with_capacity(self.output_size);

        for _ in 0..num_inner {
            self.fill_buffer();
            buf.extend_from_slice(self.read_buf.as_slice());
        }

        if remainder != 0 {
            self.fill_buffer();
            buf.extend_from_slice(&self.read_buf.as_slice()[..remainder]);
        }
        f(buf.as_slice());
    }
}

impl<H: Digest> Input for FullDomainHash<H> {
    /// Digest input data
    fn input<B: AsRef<[u8]>>(&mut self, data: B) {
        self.inner_hash.input(data);
    }
}

impl<H: Digest> Reset for FullDomainHash<H> {
    /// Reset the hasher, discarding all internal state.
    fn reset(&mut self) {
        self.inner_hash.reset();
    }
}

#[cfg(feature = "std")]
impl<H: Digest> std::io::Write for FullDomainHash<H> {
    fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
        let len = buf.len();
        self.input(buf);
        Ok(len)
    }

    fn flush(&mut self) -> std::io::Result<()> {
        Ok(())
    }
}

impl<H: Digest + Clone> ExtendableOutput for FullDomainHash<H> {
    type Reader = Self;

    fn xof_result(self) -> Self::Reader {
        self
    }
}

impl<H: Digest + Clone> digest::XofReader for FullDomainHash<H> {
    fn read(&mut self, buffer: &mut [u8]) {
        let dest_len = buffer.len();
        let source_len = self.read_buf.len();

        // Direct copy (happy path)
        if source_len == dest_len {
            self.fill_buffer();
            buffer[..].copy_from_slice(&self.read_buf.as_slice()[..]);
        } else {
            let mut n = 0; // amount written
            while n < dest_len {
                self.fill_buffer();

                // Fill either what's left in the buffer, or what's left to write to the client.
                let fill_amount = core::cmp::min(source_len - self.read_buf_pos, dest_len - n);
                let read_slice =
                    &self.read_buf.as_slice()[self.read_buf_pos..(self.read_buf_pos + fill_amount)];
                buffer[n..(n + fill_amount)].copy_from_slice(read_slice);

                self.read_buf_pos_mod_add(fill_amount);
                n += fill_amount;
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use hex;
    use sha1::Sha1;
    use sha2::Sha256;

    #[test]
    #[cfg(feature = "std")]
    fn sha256_std_test() {
        use crate::{FullDomainHash, Input, Reset, VariableOutput};

        // echo -n -e 'ATTACK AT DAWN\x00' | shasum -a 256
        let mut hasher = FullDomainHash::<Sha256>::new(256 / 8).unwrap();
        hasher.input(b"ATTACK AT DAWN");
        let result = hex::encode(hasher.vec_result());
        assert_eq!(
            result,
            "015d53c7925b4434f00286fe2f0eb28378a49300b159b896eb2356a7c4de95f1"
        );

        // Test Reset
        let mut hasher = FullDomainHash::<Sha256>::new(256 / 8).unwrap();
        hasher.input(b"ATTACK AT DAWN");
        hasher.reset();
        hasher.input(b"ATTACK AT ");
        hasher.input(b"DAWN");
        let result = hex::encode(hasher.vec_result());
        assert_eq!(
            result,
            "015d53c7925b4434f00286fe2f0eb28378a49300b159b896eb2356a7c4de95f1"
        );

        // echo -n -e 'ATTACK AT DAWN\x00' | shasum -a 256
        let mut hasher = FullDomainHash::<Sha256>::new(128 / 8).unwrap();
        hasher.input(b"ATTACK AT DAWN");
        let result = hex::encode(hasher.vec_result());
        assert_eq!(result, "015d53c7925b4434f00286fe2f0eb283");

        // echo -n -e 'ATTACK AT DAWN\x00' | shasum -a 256 && echo -n -e 'ATTACK AT DAWN\x01' | shasum -a 256
        let mut hasher = FullDomainHash::<Sha256>::new(264 / 8).unwrap();
        hasher.input(b"ATTACK AT DAWN");
        let result = hex::encode(hasher.vec_result());
        assert_eq!(
            result,
            "015d53c7925b4434f00286fe2f0eb28378a49300b159b896eb2356a7c4de95f158"
        );

        // # Expand SHA256 hash of "ATTACK AT DAWN" to 1024 bits
        // echo -n -e 'ATTACK AT DAWN\x00' | shasum -a 256 | cut -d ' ' -f 1 | tr -d '\n' &&\
        // echo -n -e 'ATTACK AT DAWN\x01' | shasum -a 256 | cut -d ' ' -f 1 | tr -d '\n' &&\
        // echo -n -e 'ATTACK AT DAWN\x02' | shasum -a 256 | cut -d ' ' -f 1 | tr -d '\n' &&\
        // echo -n -e 'ATTACK AT DAWN\x03' | shasum -a 256 | cut -d ' ' -f 1
        let mut hasher = FullDomainHash::<Sha256>::new(1024 / 8).unwrap();
        hasher.input(b"ATTACK AT DAWN");
        let result = hex::encode(hasher.vec_result());
        assert_eq!(result, "015d53c7925b4434f00286fe2f0eb28378a49300b159b896eb2356a7c4de95f158617fec3b813f834cd86ab0dd26b971c46b7ede451b490279628a265edf0a10691095675808b47c0add4300b3181a31109cbc31a945d05562ceb6cca0fea834d9c456fe1abf34a5a775ed572ce571b1dcca03b984102e666e9ab876876fb3af");

        // # Expand SHA256 hash of "ATTACK AT DAWN" to 1024 bits, using 254 as the initial suffix.
        // echo -n -e 'ATTACK AT DAWN\xFE' | shasum -a 256 | cut -d ' ' -f 1 | tr -d '\n' &&\
        // echo -n -e 'ATTACK AT DAWN\xFF' | shasum -a 256 | cut -d ' ' -f 1 | tr -d '\n' &&\
        // echo -n -e 'ATTACK AT DAWN\x00' | shasum -a 256 | cut -d ' ' -f 1 | tr -d '\n' &&\
        // echo -n -e 'ATTACK AT DAWN\x01' | shasum -a 256 | cut -d ' ' -f 1
        let mut hasher = FullDomainHash::<Sha256>::with_iv(1024 / 8, 254);
        hasher.input(b"ATTACK AT DAWN");
        let result = hex::encode(hasher.vec_result());
        assert_eq!(result, "8b41c68cc83acfa422fb6a0c61c5c7a14eef381768d37375c78caf61d76e62b4a93a562946a7378fc3eca407eb44e81fef2be026e1ee340ba85a06f9b2e4fe84015d53c7925b4434f00286fe2f0eb28378a49300b159b896eb2356a7c4de95f158617fec3b813f834cd86ab0dd26b971c46b7ede451b490279628a265edf0a10");
    }

    #[test]
    fn sha256_no_std_test() {
        // Testing with no_std;
        use crate::{ExtendableOutput, FullDomainHash, Input, XofReader};

        let mut hasher = FullDomainHash::<Sha256>::default();
        hasher.input(b"ATTACK AT DAWN");
        let mut reader = hasher.xof_result();
        let mut read_buf = <[u8; 8]>::default();

        // 015d53c7925b4434
        reader.read(&mut read_buf);
        assert_eq!(read_buf, [0x01, 0x5d, 0x53, 0xc7, 0x92, 0x5b, 0x44, 0x34]);

        // f00286fe2f0eb283
        reader.read(&mut read_buf);
        assert_eq!(read_buf, [0xf0, 0x02, 0x86, 0xfe, 0x2f, 0x0e, 0xb2, 0x83]);

        // 78a49300b159b896
        reader.read(&mut read_buf);
        assert_eq!(read_buf, [0x78, 0xa4, 0x93, 0x00, 0xb1, 0x59, 0xb8, 0x96]);

        // eb2356a7c4de95f1
        reader.read(&mut read_buf);
        assert_eq!(read_buf, [0xeb, 0x23, 0x56, 0xa7, 0xc4, 0xde, 0x95, 0xf1]);

        // 58617fec3b813f83
        reader.read(&mut read_buf);
        assert_eq!(read_buf, [0x58, 0x61, 0x7f, 0xec, 0x3b, 0x81, 0x3f, 0x83]);

        // Test with an odd number (21 in the case does not fit nicely into 32)
        let mut hasher = FullDomainHash::<Sha256>::default();
        hasher.input(b"ATTACK AT DAWN");
        let mut reader = hasher.xof_result();
        let mut read_buf = <[u8; 21]>::default();

        // 015d53c7925b4434f00286fe2f0eb28378a49300b1
        reader.read(&mut read_buf);
        assert_eq!(
            read_buf,
            [
                0x01, 0x5d, 0x53, 0xc7, 0x92, 0x5b, 0x44, 0x34, 0xf0, 0x02, 0x86, 0xfe, 0x2f, 0x0e,
                0xb2, 0x83, 0x78, 0xa4, 0x93, 0x00, 0xb1
            ]
        );

        // 59b896eb2356a7c4de95f158617fec3b813f834cd8
        reader.read(&mut read_buf);
        assert_eq!(
            read_buf,
            [
                0x59, 0xb8, 0x96, 0xeb, 0x23, 0x56, 0xa7, 0xc4, 0xde, 0x95, 0xf1, 0x58, 0x61, 0x7f,
                0xec, 0x3b, 0x81, 0x3f, 0x83, 0x4c, 0xd8
            ]
        );

        // Test where output size is larger than hash output size (21 > 20) using Sha1
        // 1adfc344b75ab9a77d70745f4ebb5a973c5d1f1d20
        let mut hasher = FullDomainHash::<Sha1>::default();
        hasher.input(b"ATTACK AT DAWN");
        let mut reader = hasher.xof_result();
        let mut read_buf = <[u8; 21]>::default();
        reader.read(&mut read_buf);
        assert_eq!(
            read_buf,
            [
                0x1a, 0xdf, 0xc3, 0x44, 0xb7, 0x5a, 0xb9, 0xa7, 0x7d, 0x70, 0x74, 0x5f, 0x4e, 0xbb,
                0x5a, 0x97, 0x3c, 0x5d, 0x1f, 0x1d, 0x20
            ]
        );

        // Test where output size and digest size are the same using Sha1.
        // 1adfc344b75ab9a77d70745f4ebb5a973c5d1f1d
        let mut hasher = FullDomainHash::<Sha1>::default();
        hasher.input(b"ATTACK AT DAWN");
        let mut reader = hasher.xof_result();
        let mut read_buf = <[u8; 20]>::default();
        reader.read(&mut read_buf);
        assert_eq!(
            read_buf,
            [
                0x1a, 0xdf, 0xc3, 0x44, 0xb7, 0x5a, 0xb9, 0xa7, 0x7d, 0x70, 0x74, 0x5f, 0x4e, 0xbb,
                0x5a, 0x97, 0x3c, 0x5d, 0x1f, 0x1d
            ]
        );
    }

    #[test]
    #[cfg(feature = "std")]
    fn test_results_within() {
        use crate::{FullDomainHash, Input, VariableOutput};
        use num_bigint::BigUint;
        use num_traits::Num;

        let min = BigUint::from_str_radix(
            "51683095453715361952842063988888814558178328011011413557662527675023521115731",
            10,
        )
        .unwrap();
        let max = BigUint::from_str_radix(
            "63372381656167118369940880608146415619543459354936568979731399163319071519847",
            10,
        )
        .unwrap();

        let mut hasher = FullDomainHash::<Sha256>::new(256 / 8).unwrap();
        hasher.input(b"ATTACK AT DAWN");
        let iv = 0;
        let (result, iv) = hasher.results_between(iv, &min, &max).unwrap();
        assert_eq!(iv, 20);
        assert_eq!(
            hex::encode(result),
            "88d7143faf611e19119e4d861673e1a7d340686c00af1d8bcf06306bb5154b4d"
        );
    }

}