1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
//! fastnbt aims for fast deserializing and serializing of NBT data from
//! *Minecraft: Java Edition*. This format is used by the game to store various
//! things, such as the world data and player inventories.
//!
//! * For documentation and examples of serde (de)serialization, see [`ser`] and
//!   [`de`].
//! * For a `serde_json`-like `Value` type see [`Value`].
//! * To easily create values, see the [`nbt`] macro.
//! * For NBT array types see [`ByteArray`], [`IntArray`], and [`LongArray`].
//! * For zero-copy NBT array types see [`borrow`].
//!
//! Both this and related crates are under one [fastnbt Github
//! repository](https://github.com/owengage/fastnbt).
//!
//! ```toml
//! [dependencies]
//! fastnbt = "2"
//! ```
//!
//! # Byte, Int and Long array types
//!
//! The NBT format has 4 sequence types: lists, byte arrays, int arrays and long
//! arrays. To preserve the distinction between NBT lists and arrays, NBT array
//! data cannot be (de)serialized into sequences like `Vec`. To capture arrays,
//! use [`ByteArray`], [`IntArray`], and [`LongArray`]. An actual NBT list can
//! be captured by a `Vec` or other suitable container.
//!
//! Use these in your own data structures. They all implement
//! [`Deref`][`std::ops::Deref`] for dereferencing into a slice.
//!
//! For versions that borrow their data, see [`borrow`].
//!
//! An example of deserializing a section of a chunk:
//!
//! ```no_run
//! use fastnbt::LongArray;
//! use serde::Deserialize;
//!
//! #[derive(Deserialize)]
//! #[serde(rename_all = "PascalCase")]
//! pub struct Section {
//!     pub block_states: Option<LongArray>,
//!     pub y: i8,
//! }
//!
//!# fn main(){
//! let buf: &[u8] = unimplemented!("get a buffer from somewhere");
//! let section: Section = fastnbt::from_bytes(buf).unwrap();
//! let states = section.block_states.unwrap();
//!
//! for long in states.iter() {
//!     // do something
//! }
//! # }
//! ```
//!
//! # Example: Player inventory
//!
//! This example demonstrates printing out a players inventory and ender chest
//! contents from the [player dat
//! files](https://minecraft.wiki/w/Player.dat_format) found in worlds.
//!
//! Here we
//! * use serde's renaming attributes to have rustfmt conformant field names,
//! * use lifetimes to save on some string allocations (see [`de`] for more
//!   info), and
//! * use the `Value` type to deserialize a field we don't know the exact
//!   structure of.
//!
//!```no_run
//! use std::borrow::Cow;
//! use fastnbt::error::Result;
//! use fastnbt::{from_bytes, Value};
//! use flate2::read::GzDecoder;
//! use serde::Deserialize;
//! use std::io::Read;
//!
//! #[derive(Deserialize, Debug)]
//! #[serde(rename_all = "PascalCase")]
//! struct PlayerDat<'a> {
//!     data_version: i32,
//!
//!     #[serde(borrow)]
//!     inventory: Vec<InventorySlot<'a>>,
//!     ender_items: Vec<InventorySlot<'a>>,
//! }
//!
//! #[derive(Deserialize, Debug)]
//! struct InventorySlot<'a> {
//!     // We typically avoid allocating a string here.
//!     // See `fastnbt::de` docs for more info.
//!     id: Cow<'a, str>,
//!
//!     // Also get the less structured properties of the object.
//!     tag: Option<Value>,
//!
//!     // We need to rename fields a lot.
//!     #[serde(rename = "Count")]
//!     count: i8,
//! }
//!
//!# fn main() {
//!     let args: Vec<_> = std::env::args().skip(1).collect();
//!     let file = std::fs::File::open(args[0].clone()).unwrap();
//!
//!     // Player dat files are compressed with GZip.
//!     let mut decoder = GzDecoder::new(file);
//!     let mut data = vec![];
//!     decoder.read_to_end(&mut data).unwrap();
//!
//!     let player: Result<PlayerDat> = from_bytes(data.as_slice());
//!
//!     println!("{:#?}", player);
//!# }
//! ```
//!
//! # Stream based parser
//!
//! A lower level parser also exists in the [`stream`] module for use cases not
//! requiring deserialization into Rust objects. You can use [`from_reader`] for
//! full deserialization.
//!

use ser::Serializer;
use serde::{de as serde_de, Deserialize, Serialize};

pub mod borrow;
pub mod de;
pub mod error;
pub mod ser;
pub mod stream;
pub mod value;

mod arrays;
mod input;
#[macro_use]
mod macros;

pub use arrays::*;
pub use value::{from_value, to_value, Value};

#[cfg(test)]
mod test;

use crate::{
    de::Deserializer,
    error::{Error, Result},
};
use std::{
    convert::TryFrom,
    fmt::Display,
    io::{Read, Write},
};

/// An NBT tag. This does not carry the value or the name of the data.
#[derive(Deserialize, Debug, PartialEq, Clone, Copy)]
#[cfg_attr(feature = "arbitrary1", derive(arbitrary::Arbitrary))]
#[repr(u8)]
pub enum Tag {
    /// Represents the end of a Compound object.
    End = 0,
    /// Equivalent to i8.
    Byte = 1,
    /// Equivalent to i16.
    Short = 2,
    /// Equivalent to i32.
    Int = 3,
    /// Equivalent to i64
    Long = 4,
    /// Equivalent to f32.
    Float = 5,
    /// Equivalent to f64.
    Double = 6,
    /// Represents as array of Byte (i8).
    ByteArray = 7,
    /// Represents a Unicode string.
    String = 8,
    /// Represents a list of other objects, elements are not required to be the same type.
    List = 9,
    /// Represents a struct-like structure.
    Compound = 10,
    /// Represents as array of Int (i32).
    IntArray = 11,
    /// Represents as array of Long (i64).
    LongArray = 12,
}

// Crates exist to generate this code for us, but would add to our compile
// times, so we instead write it out manually, the tags will very rarely change
// so isn't a massive burden, but saves a significant amount of compile time.
impl TryFrom<u8> for Tag {
    type Error = ();

    fn try_from(value: u8) -> std::result::Result<Self, ()> {
        use Tag::*;
        Ok(match value {
            0 => End,
            1 => Byte,
            2 => Short,
            3 => Int,
            4 => Long,
            5 => Float,
            6 => Double,
            7 => ByteArray,
            8 => String,
            9 => List,
            10 => Compound,
            11 => IntArray,
            12 => LongArray,
            13..=u8::MAX => return Err(()),
        })
    }
}

impl From<Tag> for u8 {
    fn from(tag: Tag) -> Self {
        match tag {
            Tag::End => 0,
            Tag::Byte => 1,
            Tag::Short => 2,
            Tag::Int => 3,
            Tag::Long => 4,
            Tag::Float => 5,
            Tag::Double => 6,
            Tag::ByteArray => 7,
            Tag::String => 8,
            Tag::List => 9,
            Tag::Compound => 10,
            Tag::IntArray => 11,
            Tag::LongArray => 12,
        }
    }
}

impl Display for Tag {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let s = match self {
            Tag::End => "end",
            Tag::Byte => "byte",
            Tag::Short => "short",
            Tag::Int => "int",
            Tag::Long => "long",
            Tag::Float => "float",
            Tag::Double => "double",
            Tag::ByteArray => "byte-array",
            Tag::String => "string",
            Tag::List => "list",
            Tag::Compound => "compound",
            Tag::IntArray => "int-array",
            Tag::LongArray => "long-array",
        };
        f.write_str(s)
    }
}

/// Serialize some `T` into NBT data. See the [`ser`] module for more
/// information.
pub fn to_bytes<T: Serialize>(v: &T) -> Result<Vec<u8>> {
    to_bytes_with_opts(v, Default::default())
}

/// Serialize some `T` into NBT data. See the [`ser`] module for more
/// information.
pub fn to_writer<T: Serialize, W: Write>(writer: W, v: &T) -> Result<()> {
    to_writer_with_opts(writer, v, Default::default())
}

/// Options for customizing serialization.
#[derive(Default, Clone)]
pub struct SerOpts {
    root_name: String,
}

impl SerOpts {
    /// Create new options. This object follows a builder pattern.
    pub fn new() -> Self {
        Default::default()
    }

    /// Set the root name (top level) of the compound. In most Minecraft data
    /// structures this is the empty string. The [`ser`][`crate::ser`] module
    /// contains an example.
    pub fn root_name(mut self, root_name: impl Into<String>) -> Self {
        self.root_name = root_name.into();
        self
    }
}

/// Serialize some `T` into NBT data. See the [`ser`] module for more
/// information. The options allow you to set things like the root name of the
/// compound when serialized.
pub fn to_bytes_with_opts<T: Serialize>(v: &T, opts: SerOpts) -> Result<Vec<u8>> {
    let mut result = vec![];
    let mut serializer = Serializer {
        writer: &mut result,
        root_name: opts.root_name,
    };
    v.serialize(&mut serializer)?;
    Ok(result)
}

/// Serialize some `T` into NBT data. See the [`ser`] module for more
/// information. The options allow you to set things like the root name of the
/// compound when serialized.
pub fn to_writer_with_opts<T: Serialize, W: Write>(writer: W, v: &T, opts: SerOpts) -> Result<()> {
    let mut serializer = Serializer {
        writer,
        root_name: opts.root_name,
    };
    v.serialize(&mut serializer)?;
    Ok(())
}

/// Deserialize into a `T` from some NBT data. See the [`de`] module for more
/// information.
///
/// ```no_run
/// # use fastnbt::Value;
/// # use flate2::read::GzDecoder;
/// # use std::io;
/// # use std::io::Read;
/// # use fastnbt::error::Result;
/// # fn main() -> Result<()> {
/// # let some_reader = io::stdin();
/// let mut decoder = GzDecoder::new(some_reader);
/// let mut buf = vec![];
/// decoder.read_to_end(&mut buf).unwrap();
///
/// let val: Value = fastnbt::from_bytes(buf.as_slice())?;
/// # Ok(())
/// # }
/// ```
pub fn from_bytes<'a, T>(input: &'a [u8]) -> Result<T>
where
    T: serde_de::Deserialize<'a>,
{
    from_bytes_with_opts(input, Default::default())
}

/// Deserialize into a `T` from some NBT data. See the [`de`] module for more
/// information.
///
/// ```no_run
/// # use fastnbt::Value;
/// # use flate2::read::GzDecoder;
/// # use std::io;
/// # use std::io::Read;
/// # use fastnbt::error::Result;
/// # fn main() -> Result<()> {
/// # let some_reader = io::stdin();
/// let mut decoder = GzDecoder::new(some_reader);
/// let val: Value = fastnbt::from_reader(decoder)?;
/// # Ok(())
/// # }
/// ```
pub fn from_reader<'de, R, T>(reader: R) -> Result<T>
where
    T: serde_de::Deserialize<'de>,
    R: Read,
{
    let mut deserializer = Deserializer::from_reader(reader, Default::default());
    serde_de::Deserialize::deserialize(&mut deserializer)
}

/// Options for customizing deserialization.
#[derive(Clone)]
pub struct DeOpts {
    /// Maximum number of bytes a list or array can be.
    max_seq_len: usize,
}

impl DeOpts {
    /// Create new options. This object follows a builder pattern.
    pub fn new() -> Self {
        Default::default()
    }

    /// Set the maximum length any given sequence can be, eg lists. This does
    /// not apply to NBT array types. This can help prevent panics on malformed
    /// data.
    pub fn max_seq_len(mut self, value: usize) -> Self {
        self.max_seq_len = value;
        self
    }
}

impl Default for DeOpts {
    fn default() -> Self {
        Self {
            max_seq_len: 10_000_000, // arbitrary high limit.
        }
    }
}

/// Similar to [`from_bytes`] but with options.
pub fn from_bytes_with_opts<'a, T>(input: &'a [u8], opts: DeOpts) -> Result<T>
where
    T: serde_de::Deserialize<'a>,
{
    const GZIP_MAGIC_BYTES: [u8; 2] = [0x1f, 0x8b];

    // Provide freindly error for the common case of passing GZip data to
    // `from_bytes`. This would be invalid starting data for NBT anyway.
    if input.starts_with(&GZIP_MAGIC_BYTES) {
        return Err(Error::bespoke(
            "from_bytes expects raw NBT, but input appears to be gzipped".to_string(),
        ));
    }

    let mut des = Deserializer::from_bytes(input, opts);
    let t = T::deserialize(&mut des)?;
    Ok(t)
}