1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
//! This module evaluates parsed `Expression`s and compiled `Instruction`s.
//!
//! Everything can be evaluated using the `.eval()` method, but compiled
//! `Instruction`s also have the option of using the `eval_compiled!()` macro
//! which is much faster for common cases.



use crate as fasteval;

use crate::error::Error;
use crate::slab::Slab;
use crate::evalns::EvalNamespace;
use crate::parser::{Expression,
                    Value::{self, EConstant, EUnaryOp, EStdFunc, EPrintFunc},
                    UnaryOp::{self, EPos, ENeg, ENot, EParentheses},
                    BinaryOp::{self, EAdd, ESub, EMul, EDiv, EMod, EExp, ELT, ELTE, EEQ, ENE, EGTE, EGT, EOR, EAND},
                    StdFunc::{self, EVar, EFunc, EFuncInt, EFuncCeil, EFuncFloor, EFuncAbs, EFuncSign, EFuncLog, EFuncRound, EFuncMin, EFuncMax, EFuncE, EFuncPi, EFuncSin, EFuncCos, EFuncTan, EFuncASin, EFuncACos, EFuncATan, EFuncSinH, EFuncCosH, EFuncTanH, EFuncASinH, EFuncACosH, EFuncATanH},
                    PrintFunc,
                    ExpressionOrString::{EExpr, EStr},
                    remove_no_panic};
#[cfg(feature="unsafe-vars")]
use crate::parser::StdFunc::EUnsafeVar;
use crate::compiler::{log, IC, Instruction::{self, IConst, INeg, INot, IInv, IAdd, IMul, IMod, IExp, ILT, ILTE, IEQ, INE, IGTE, IGT, IOR, IAND, IVar, IFunc, IFuncInt, IFuncCeil, IFuncFloor, IFuncAbs, IFuncSign, IFuncLog, IFuncRound, IFuncMin, IFuncMax, IFuncSin, IFuncCos, IFuncTan, IFuncASin, IFuncACos, IFuncATan, IFuncSinH, IFuncCosH, IFuncTanH, IFuncASinH, IFuncACosH, IFuncATanH, IPrintFunc}};
#[cfg(feature="unsafe-vars")]
use crate::compiler::Instruction::IUnsafeVar;

use std::collections::BTreeSet;
use std::f64::consts;
use std::fmt;



/// The same as `evaler.eval(&slab, &mut ns)`, but more efficient for common cases.
///
/// This macro is exactly the same as [`eval_compiled_ref!()`](macro.eval_compiled_ref.html)
/// but is more efficient if you have ownership of the evaler.
///
/// Only use this for compiled expressions.  (If you use it for interpreted
/// expressions, it will work but will always be slower than calling `eval()` directly.)
///
/// This macro is able to eliminate function calls for constants and Unsafe Variables.
/// Since evaluation is a performance-critical operation, saving some function
/// calls actually makes a huge performance difference.
///
#[macro_export]
macro_rules! eval_compiled {
    ($evaler:ident, $slab_ref:expr, $ns_mut:expr) => {
        if let fasteval::IConst(c) = $evaler {
            c
        } else {
            #[cfg(feature="unsafe-vars")]
            {
                if let fasteval::IUnsafeVar{ptr, ..} = $evaler {
                    unsafe { *ptr }
                } else {
                    $evaler.eval($slab_ref, $ns_mut)?
                }
            }

            #[cfg(not(feature="unsafe-vars"))]
            $evaler.eval($slab_ref, $ns_mut)?
        }
    };
    ($evaler:expr, $slab_ref:expr, $ns_mut:expr) => {
        {
            let evaler = $evaler;
            eval_compiled!(evaler, $slab_ref, $ns_mut)
        }
    };
}

/// The same as `evaler_ref.eval(&slab, &mut ns)`, but more efficient for common cases.
///
/// This macro is exactly the same as [`eval_compiled!()`](macro.eval_compiled.html) but
/// is useful when you hold a reference to the evaler, rather than having ownership of it.
///
/// Only use this for compiled expressions.  (If you use it for interpreted
/// expressions, it will work but will always be slower than calling `eval()` directly.)
///
/// This macro is able to eliminate function calls for constants and Unsafe Variables.
/// Since evaluation is a performance-critical operation, saving some function
/// calls actually makes a huge performance difference.
///
#[macro_export]
macro_rules! eval_compiled_ref {
    ($evaler:ident, $slab_ref:expr, $ns_mut:expr) => {
        if let fasteval::IConst(c) = $evaler {
            *c
        } else {
            #[cfg(feature="unsafe-vars")]
            {
                if let fasteval::IUnsafeVar{ptr, ..} = $evaler {
                    unsafe { **ptr }
                } else {
                    $evaler.eval($slab_ref, $ns_mut)?
                }
            }

            #[cfg(not(feature="unsafe-vars"))]
            $evaler.eval($slab_ref, $ns_mut)?
        }
    };
    ($evaler:expr, $slab_ref:expr, $ns_mut:expr) => {
        {
            let evaler = $evaler;
            eval_compiled_ref!(evaler, $slab_ref, $ns_mut)
        }
    };
}

macro_rules! eval_ic_ref {
    ($ic:ident, $slab_ref:ident, $ns_mut:expr) => {
        match $ic {
            IC::C(c) => *c,
            IC::I(i) => {
                let instr_ref = get_instr!($slab_ref.cs,i);

                #[cfg(feature="unsafe-vars")]
                {
                    if let fasteval::IUnsafeVar{ptr, ..} = instr_ref {
                        unsafe { **ptr }
                    } else {
                        instr_ref.eval($slab_ref, $ns_mut)?
                    }
                }

                #[cfg(not(feature="unsafe-vars"))]
                instr_ref.eval($slab_ref, $ns_mut)?
            }
        }
    }
}



/// You must `use` this trait so you can call `.eval()`.
pub trait Evaler : fmt::Debug {
    /// Evaluate this `Expression`/`Instruction` and return an `f64`.
    ///
    /// Returns a `fasteval::Error` if there are any problems, such as undefined variables.
    fn eval(&self, slab:&Slab, ns:&mut impl EvalNamespace) -> Result<f64,Error>;

    /// Don't call this directly.  Use `var_names()` instead.
    ///
    /// This exists because of ternary short-circuits; they prevent us from
    /// getting a complete list of vars just by doing eval() with a clever
    /// callback.
    fn _var_names(&self, slab:&Slab, dst:&mut BTreeSet<String>);

    /// Returns a list of variables and custom functions that are used by this `Expression`/`Instruction`.
    fn var_names(&self, slab:&Slab) -> BTreeSet<String> {
        let mut set = BTreeSet::new();
        self._var_names(slab,&mut set);
        set
    }
}

impl Evaler for Expression {
    fn _var_names(&self, slab:&Slab, dst:&mut BTreeSet<String>) {
        self.first._var_names(slab,dst);
        for pair in &self.pairs {
            pair.1._var_names(slab,dst);
        }
    }
    fn eval(&self, slab:&Slab, ns:&mut impl EvalNamespace) -> Result<f64,Error> {
        // Order of operations: 1) ^  2) */  3) +-
        // Exponentiation should be processed right-to-left.  Think of what 2^3^4 should mean:
        //     2^(3^4)=2417851639229258349412352   <--- I choose this one.  https://codeplea.com/exponentiation-associativity-options
        //     (2^3)^4=4096
        // Direction of processing doesn't matter for Addition and Multiplication:
        //     (((3+4)+5)+6)==(3+(4+(5+6))), (((3*4)*5)*6)==(3*(4*(5*6)))
        // ...But Subtraction and Division must be processed left-to-right:
        //     (((6-5)-4)-3)!=(6-(5-(4-3))), (((6/5)/4)/3)!=(6/(5/(4/3)))


        // // ---- Go code, for comparison ----
        // // vals,ops:=make([]float64, len(e)/2+1),make([]BinaryOp, len(e)/2)
        // // for i:=0; i<len(e); i+=2 {
        // //     vals[i/2]=ns.EvalBubble(e[i].(evaler))
        // //     if i<len(e)-1 { ops[i/2]=e[i+1].(BinaryOp) }
        // // }

        // if self.0.len()%2!=1 { return Err(KErr::new("Expression len should always be odd")) }
        // let mut vals : Vec<f64>      = Vec::with_capacity(self.0.len()/2+1);
        // let mut ops  : Vec<BinaryOp> = Vec::with_capacity(self.0.len()/2  );
        // for (i,tok) in self.0.iter().enumerate() {
        //     match tok {
        //         EValue(val) => {
        //             if i%2==1 { return Err(KErr::new("Found value at odd index")) }
        //             match ns.eval_bubble(val) {
        //                 Ok(f) => vals.push(f),
        //                 Err(e) => return Err(e.pre(&format!("eval_bubble({:?})",val))),
        //             }
        //         }
        //         EBinaryOp(bop) => {
        //             if i%2==0 { return Err(KErr::new("Found binaryop at even index")) }
        //             ops.push(*bop);
        //         }
        //     }
        // }

        // Code for new Expression data structure:
        let mut vals = Vec::<f64>::with_capacity(self.pairs.len()+1);
        let mut ops  = Vec::<BinaryOp>::with_capacity(self.pairs.len());
        vals.push(self.first.eval(slab,ns)?);
        for pair in self.pairs.iter() {
            ops.push(pair.0);
            vals.push(pair.1.eval(slab,ns)?);
        }


        // ---- Go code, for comparison ----
        // evalOp:=func(i int) {
        //     result:=ops[i]._Eval(vals[i], vals[i+1])
        //     vals=append(append(vals[:i], result), vals[i+2:]...)
        //     ops=append(ops[:i], ops[i+1:]...)
        // }
        // rtol:=func(s BinaryOp) { for i:=len(ops)-1; i>=0; i-- { if ops[i]==s { evalOp(i) } } }
        // ltor:=func(s BinaryOp) {
        //     loop:
        //     for i:=0; i<len(ops); i++ { if ops[i]==s { evalOp(i); goto loop } }  // Need to restart processing when modifying from the left.
        // }

        #[inline(always)]
        fn rtol(vals:&mut Vec<f64>, ops:&mut Vec<BinaryOp>, search:BinaryOp) {
            for i in (0..ops.len()).rev() {
                let op = match ops.get(i) {
                    Some(op) => *op,
                    None => EOR,  // unreachable
                };
                if op==search {
                    let res = op.binaryop_eval(vals.get(i), vals.get(i+1));
                    match vals.get_mut(i) {
                        Some(val_ref) => *val_ref=res,
                        None => (),  // unreachable
                    };
                    remove_no_panic(vals, i+1);
                    remove_no_panic(ops, i);
                }
            }
        }
        #[inline(always)]
        fn ltor(vals:&mut Vec<f64>, ops:&mut Vec<BinaryOp>, search:BinaryOp) {
            let mut i = 0;
            loop {
                match ops.get(i) {
                    None => break,
                    Some(op) => {
                        if *op==search {
                            let res = op.binaryop_eval(vals.get(i), vals.get(i+1));
                            match vals.get_mut(i) {
                                Some(val_ref) => *val_ref=res,
                                None => (),  // unreachable
                            };
                            remove_no_panic(vals, i+1);
                            remove_no_panic(ops, i);
                        } else {
                            i=i+1;
                        }
                    }
                }
            }
        }
        #[inline(always)]
        fn ltor_multi(vals:&mut Vec<f64>, ops:&mut Vec<BinaryOp>, search:&[BinaryOp]) {
            let mut i = 0;
            loop {
                match ops.get(i) {
                    None => break,
                    Some(op) => {
                        if search.contains(op) {
                            let res = op.binaryop_eval(vals.get(i), vals.get(i+1));
                            match vals.get_mut(i) {
                                Some(val_ref) => *val_ref=res,
                                None => (),  // unreachable
                            };
                            remove_no_panic(vals, i+1);
                            remove_no_panic(ops, i);
                        } else {
                            i=i+1;
                        }
                    }
                }
            }
        }

        // Keep the order of these statements in-sync with parser.rs BinaryOp priority values:
        rtol(&mut vals, &mut ops, EExp);  // https://codeplea.com/exponentiation-associativity-options
        ltor(&mut vals, &mut ops, EMod);
        ltor(&mut vals, &mut ops, EDiv);
        rtol(&mut vals, &mut ops, EMul);
        ltor(&mut vals, &mut ops, ESub);
        rtol(&mut vals, &mut ops, EAdd);
        ltor_multi(&mut vals, &mut ops, &[ELT, EGT, ELTE, EGTE, EEQ, ENE]);  // TODO: Implement Python-style a<b<c ternary comparison... might as well generalize to N comparisons.
        ltor(&mut vals, &mut ops, EAND);
        ltor(&mut vals, &mut ops, EOR);

        if !ops.is_empty() { return Err(Error::Unreachable); }
        if vals.len()!=1 { return Err(Error::Unreachable); }
        match vals.first() {
            Some(val) => Ok(*val),
            None => Err(Error::Unreachable),
        }
    }
}

impl Evaler for Value {
    fn _var_names(&self, slab:&Slab, dst:&mut BTreeSet<String>) {
        match self {
            EConstant(_) => (),
            EUnaryOp(u) => u._var_names(slab,dst),
            EStdFunc(f) => f._var_names(slab,dst),
            EPrintFunc(f) => f._var_names(slab,dst),
        };
    }
    fn eval(&self, slab:&Slab, ns:&mut impl EvalNamespace) -> Result<f64,Error> {
        match self {
            EConstant(c) => Ok(*c),
            EUnaryOp(u) => u.eval(slab,ns),
            EStdFunc(f) => f.eval(slab,ns),
            EPrintFunc(f) => f.eval(slab,ns),
        }
    }
}

impl Evaler for UnaryOp {
    fn _var_names(&self, slab:&Slab, dst:&mut BTreeSet<String>) {
        match self {
            EPos(val_i) | ENeg(val_i) | ENot(val_i) => get_val!(slab.ps,val_i)._var_names(slab,dst),
            EParentheses(expr_i) => get_expr!(slab.ps,expr_i)._var_names(slab,dst),
        }
    }
    fn eval(&self, slab:&Slab, ns:&mut impl EvalNamespace) -> Result<f64,Error> {
        match self {
            EPos(val_i) => get_val!(slab.ps,val_i).eval(slab,ns),
            ENeg(val_i) => Ok(-get_val!(slab.ps,val_i).eval(slab,ns)?),
            ENot(val_i) => Ok(bool_to_f64!(f64_eq!(get_val!(slab.ps,val_i).eval(slab,ns)?,0.0))),
            EParentheses(expr_i) => get_expr!(slab.ps,expr_i).eval(slab,ns),
        }
    }
}

impl BinaryOp {
    // Non-standard eval interface (not generalized yet):
    fn binaryop_eval(self, left_opt:Option<&f64>, right_opt:Option<&f64>) -> f64 {  // Passing 'self' by value is more efficient than pass-by-reference.
        let left = match left_opt {
            Some(l) => *l,
            None => return std::f64::NAN,
        };
        let right = match right_opt {
            Some(r) => *r,
            None => return std::f64::NAN,
        };
        match self {
            EAdd => left+right,  // Floats don't overflow.
            ESub => left-right,
            EMul => left*right,
            EDiv => left/right,
            EMod => left%right, //left - (left/right).trunc()*right
            EExp => left.powf(right),
            ELT => bool_to_f64!(left<right),
            ELTE => bool_to_f64!(left<=right),
            EEQ => bool_to_f64!(f64_eq!(left,right)),
            ENE => bool_to_f64!(f64_ne!(left,right)),
            EGTE => bool_to_f64!(left>=right),
            EGT => bool_to_f64!(left>right),
            EOR => if f64_ne!(left,0.0) { left }
                   else { right },
            EAND => if f64_eq!(left,0.0) { left }
                    else { right },
        }
    }
}

macro_rules! eval_var {
    ($ns:ident, $name:ident, $args:expr, $keybuf:expr) => {
        match $ns.lookup($name,$args,$keybuf) {
            Some(f) => Ok(f),
            None => Err(Error::Undefined($name.to_string())),
        }
    };
}

impl Evaler for StdFunc {
    fn _var_names(&self, slab:&Slab, dst:&mut BTreeSet<String>) {
        match self {
            #[cfg(feature="unsafe-vars")]
            EUnsafeVar{name, ..} => { dst.insert(name.clone()); }

            EVar(s) => { dst.insert(s.clone()); }
            EFunc{name, ..} => { dst.insert(name.clone()); }

            EFuncInt(xi) | EFuncCeil(xi) | EFuncFloor(xi) | EFuncAbs(xi) | EFuncSign(xi) | EFuncSin(xi) | EFuncCos(xi) | EFuncTan(xi) | EFuncASin(xi) | EFuncACos(xi) | EFuncATan(xi) | EFuncSinH(xi) | EFuncCosH(xi) | EFuncTanH(xi) | EFuncASinH(xi) | EFuncACosH(xi) | EFuncATanH(xi) => get_expr!(slab.ps,xi)._var_names(slab,dst),

            EFuncE | EFuncPi => (),

            EFuncLog{base:opt,expr} | EFuncRound{modulus:opt,expr} => {
                match opt {
                    Some(xi) => get_expr!(slab.ps,xi)._var_names(slab,dst),
                    None => (),
                }
                get_expr!(slab.ps,expr)._var_names(slab,dst);
            }
            EFuncMin{first,rest} | EFuncMax{first,rest} => {
                get_expr!(slab.ps,first)._var_names(slab,dst);
                for xi in rest {
                    get_expr!(slab.ps,xi)._var_names(slab,dst);
                }
            }
        };
    }
    fn eval(&self, slab:&Slab, ns:&mut impl EvalNamespace) -> Result<f64,Error> {
        match self {
            // These match arms are ordered in a way that I feel should deliver good performance.
            // (I don't think this ordering actually affects the generated code, though.)

            #[cfg(feature="unsafe-vars")]
            EUnsafeVar{ptr, ..} => unsafe { Ok(**ptr) },

            EVar(name) => eval_var!(ns, name, Vec::new(), unsafe{ &mut *(&slab.ps.char_buf as *const _ as *mut _) }),
            EFunc{name, args:xis} => {
                let mut args = Vec::with_capacity(xis.len());
                for xi in xis {
                    args.push(get_expr!(slab.ps,xi).eval(slab,ns)?)
                }
                eval_var!(ns, name, args, unsafe{ &mut *(&slab.ps.char_buf as *const _ as *mut _) })
            }

            EFuncLog{base:base_opt, expr:expr_i} => {
                let base = match base_opt {
                    Some(b_expr_i) => get_expr!(slab.ps,b_expr_i).eval(slab,ns)?,
                    None => 10.0,
                };
                let n = get_expr!(slab.ps,expr_i).eval(slab,ns)?;
                Ok(log(base,n))
            }

            EFuncSin(expr_i) => Ok(get_expr!(slab.ps,expr_i).eval(slab,ns)?.sin()),
            EFuncCos(expr_i) => Ok(get_expr!(slab.ps,expr_i).eval(slab,ns)?.cos()),
            EFuncTan(expr_i) => Ok(get_expr!(slab.ps,expr_i).eval(slab,ns)?.tan()),
            EFuncASin(expr_i) => Ok(get_expr!(slab.ps,expr_i).eval(slab,ns)?.asin()),
            EFuncACos(expr_i) => Ok(get_expr!(slab.ps,expr_i).eval(slab,ns)?.acos()),
            EFuncATan(expr_i) => Ok(get_expr!(slab.ps,expr_i).eval(slab,ns)?.atan()),
            EFuncSinH(expr_i) => Ok(get_expr!(slab.ps,expr_i).eval(slab,ns)?.sinh()),
            EFuncCosH(expr_i) => Ok(get_expr!(slab.ps,expr_i).eval(slab,ns)?.cosh()),
            EFuncTanH(expr_i) => Ok(get_expr!(slab.ps,expr_i).eval(slab,ns)?.tanh()),
            EFuncASinH(expr_i) => Ok(get_expr!(slab.ps,expr_i).eval(slab,ns)?.asinh()),
            EFuncACosH(expr_i) => Ok(get_expr!(slab.ps,expr_i).eval(slab,ns)?.acosh()),
            EFuncATanH(expr_i) => Ok(get_expr!(slab.ps,expr_i).eval(slab,ns)?.atanh()),

            EFuncRound{modulus:modulus_opt, expr:expr_i} => {
                let modulus = match modulus_opt {
                    Some(m_expr_i) => get_expr!(slab.ps,m_expr_i).eval(slab,ns)?,
                    None => 1.0,
                };
                Ok((get_expr!(slab.ps,expr_i).eval(slab,ns)?/modulus).round() * modulus)
            }

            EFuncAbs(expr_i) => Ok(get_expr!(slab.ps,expr_i).eval(slab,ns)?.abs()),
            EFuncSign(expr_i) => Ok(get_expr!(slab.ps,expr_i).eval(slab,ns)?.signum()),
            EFuncInt(expr_i) => Ok(get_expr!(slab.ps,expr_i).eval(slab,ns)?.trunc()),
            EFuncCeil(expr_i) => Ok(get_expr!(slab.ps,expr_i).eval(slab,ns)?.ceil()),
            EFuncFloor(expr_i) => Ok(get_expr!(slab.ps,expr_i).eval(slab,ns)?.floor()),
            EFuncMin{first:first_i, rest} => {
                let mut min = get_expr!(slab.ps,first_i).eval(slab,ns)?;
                let mut saw_nan = min.is_nan();
                for x_i in rest.iter() {
                    min = min.min(get_expr!(slab.ps,x_i).eval(slab,ns)?);
                    saw_nan = saw_nan || min.is_nan();
                }
                if saw_nan { Ok(std::f64::NAN)
                } else { Ok(min) }
            }
            EFuncMax{first:first_i, rest} => {
                let mut max = get_expr!(slab.ps,first_i).eval(slab,ns)?;
                let mut saw_nan = max.is_nan();
                for x_i in rest.iter() {
                    max = max.max(get_expr!(slab.ps,x_i).eval(slab,ns)?);
                    saw_nan = saw_nan || max.is_nan();
                }
                if saw_nan { Ok(std::f64::NAN)
                } else { Ok(max) }
            }

            EFuncE => Ok(consts::E),
            EFuncPi => Ok(consts::PI),
        }
    }
}

impl Evaler for PrintFunc {
    fn _var_names(&self, slab:&Slab, dst:&mut BTreeSet<String>) {
        for x_or_s in &self.0 {
            match x_or_s {
                EExpr(xi) => get_expr!(slab.ps,xi)._var_names(slab,dst),
                EStr(_) => (),
            };
        }
    }
    fn eval(&self, slab:&Slab, ns:&mut impl EvalNamespace) -> Result<f64,Error> {
        let mut val = 0f64;

        fn process_str(s:&str) -> String {
            s.replace("\\n","\n").replace("\\t","\t")
        }

        if let Some(EStr(fmtstr)) = self.0.first() {
            if fmtstr.contains('%') {
                // printf mode:

                //let fmtstr = process_str(fmtstr);

                return Err(Error::WrongArgs("printf formatting is not yet implemented".to_string()));  // TODO: Make a pure-rust sprintf libarary.

                //return Ok(val);
            }
        }

        // Normal Mode:
        let mut out = String::with_capacity(16);
        for (i,a) in self.0.iter().enumerate() {
            if i>0 { out.push(' '); }
            match a {
                EExpr(e_i) => {
                    val = get_expr!(slab.ps,e_i).eval(slab,ns)?;
                    out.push_str(&val.to_string());
                }
                EStr(s) => out.push_str(&process_str(s))
            }
        }
        eprintln!("{}", out);

        Ok(val)
    }
}

impl Evaler for Instruction {
    fn _var_names(&self, slab:&Slab, dst:&mut BTreeSet<String>) {
        match self {
            #[cfg(feature="unsafe-vars")]
            IUnsafeVar{name, ..} => { dst.insert(name.clone()); }

            IVar(s) => { dst.insert(s.clone()); }
            IFunc{name, ..} => { dst.insert(name.clone()); }

            IConst(_) => (),

            INeg(ii) | INot(ii) | IInv(ii) | IFuncInt(ii) | IFuncCeil(ii) | IFuncFloor(ii) | IFuncAbs(ii) | IFuncSign(ii) | IFuncSin(ii) | IFuncCos(ii) | IFuncTan(ii) | IFuncASin(ii) | IFuncACos(ii) | IFuncATan(ii) | IFuncSinH(ii) | IFuncCosH(ii) | IFuncTanH(ii) | IFuncASinH(ii) | IFuncACosH(ii) | IFuncATanH(ii) => get_instr!(slab.cs,ii)._var_names(slab,dst),

            ILT(lic,ric) | ILTE(lic,ric) | IEQ(lic,ric) | INE(lic,ric) | IGTE(lic,ric) | IGT(lic,ric) | IMod{dividend:lic, divisor:ric} | IExp{base:lic, power:ric} | IFuncLog{base:lic, of:ric} | IFuncRound{modulus:lic, of:ric} => {
                let mut iconst : Instruction;
                ic_to_instr!(slab.cs,iconst,lic)._var_names(slab,dst);
                ic_to_instr!(slab.cs,iconst,ric)._var_names(slab,dst);
            }

            IAdd(li,ric) | IMul(li,ric) | IOR(li,ric) | IAND(li,ric) | IFuncMin(li,ric) | IFuncMax(li,ric) => {
                get_instr!(slab.cs,li)._var_names(slab,dst);
                let iconst : Instruction;
                ic_to_instr!(slab.cs,iconst,ric)._var_names(slab,dst);
            }

            IPrintFunc(pf) => pf._var_names(slab,dst),
        }
    }
    fn eval(&self, slab:&Slab, ns:&mut impl EvalNamespace) -> Result<f64,Error> {
        match self {
            // I have manually ordered these match arms in a way that I feel should deliver good performance.
            // (I don't think this ordering actually affects the generated code, though.)

            IMul(li,ric) => {
                Ok( eval_compiled_ref!(get_instr!(slab.cs,li), slab, ns) *
                    eval_ic_ref!(ric,slab,ns) )
            }
            IAdd(li,ric) => {
                Ok( eval_compiled_ref!(get_instr!(slab.cs,li), slab, ns) +
                    eval_ic_ref!(ric, slab, ns) )
            }
            IExp{base, power} => {
                Ok( eval_ic_ref!(base, slab, ns).powf(
                    eval_ic_ref!(power, slab, ns) ) )
            }

            INeg(i) => Ok(-eval_compiled_ref!(get_instr!(slab.cs,i), slab, ns)),
            IInv(i) => Ok(1.0/eval_compiled_ref!(get_instr!(slab.cs,i), slab, ns)),

            IVar(name) => eval_var!(ns, name, Vec::new(), unsafe{ &mut *(&slab.ps.char_buf as *const _ as *mut _) }),
            IFunc{name, args:ics} => {
                let mut args = Vec::with_capacity(ics.len());
                for ic in ics {
                    args.push( eval_ic_ref!(ic, slab, ns) );
                }
                eval_var!(ns, name, args, unsafe{ &mut *(&slab.ps.char_buf as *const _ as *mut _) })
            },

            IFuncLog{base:baseic, of:ofic} => {
                let base = eval_ic_ref!(baseic, slab, ns);
                let of = eval_ic_ref!(ofic, slab, ns);
                Ok(log(base,of))
            }

            IFuncSin(i) => Ok( eval_compiled_ref!(get_instr!(slab.cs,i), slab, ns).sin() ),
            IFuncCos(i) => Ok( eval_compiled_ref!(get_instr!(slab.cs,i), slab, ns).cos() ),
            IFuncTan(i) => Ok( eval_compiled_ref!(get_instr!(slab.cs,i), slab, ns).tan() ),
            IFuncASin(i) => Ok( eval_compiled_ref!(get_instr!(slab.cs,i), slab, ns).asin() ),
            IFuncACos(i) => Ok( eval_compiled_ref!(get_instr!(slab.cs,i), slab, ns).acos() ),
            IFuncATan(i) => Ok( eval_compiled_ref!(get_instr!(slab.cs,i), slab, ns).atan() ),
            IFuncSinH(i) => Ok( eval_compiled_ref!(get_instr!(slab.cs,i), slab, ns).sinh() ),
            IFuncCosH(i) => Ok( eval_compiled_ref!(get_instr!(slab.cs,i), slab, ns).cosh() ),
            IFuncTanH(i) => Ok( eval_compiled_ref!(get_instr!(slab.cs,i), slab, ns).tanh() ),
            IFuncASinH(i) => Ok( eval_compiled_ref!(get_instr!(slab.cs,i), slab, ns).asinh() ),
            IFuncACosH(i) => Ok( eval_compiled_ref!(get_instr!(slab.cs,i), slab, ns).acosh() ),
            IFuncATanH(i) => Ok( eval_compiled_ref!(get_instr!(slab.cs,i), slab, ns).atanh() ),

            IFuncRound{modulus:modic, of:ofic} => {
                let modulus = eval_ic_ref!(modic, slab, ns);
                let of = eval_ic_ref!(ofic, slab, ns);
                Ok( (of/modulus).round() * modulus )
            }
            IMod{dividend, divisor} => {
                Ok( eval_ic_ref!(dividend, slab, ns) %
                    eval_ic_ref!(divisor, slab, ns) )
            }

            IFuncAbs(i) => Ok( eval_compiled_ref!(get_instr!(slab.cs,i), slab, ns).abs() ),
            IFuncSign(i) => Ok( eval_compiled_ref!(get_instr!(slab.cs,i), slab, ns).signum() ),
            IFuncInt(i) => Ok( eval_compiled_ref!(get_instr!(slab.cs,i), slab, ns).trunc() ),
            IFuncCeil(i) => Ok( eval_compiled_ref!(get_instr!(slab.cs,i), slab, ns).ceil() ),
            IFuncFloor(i) => Ok( eval_compiled_ref!(get_instr!(slab.cs,i), slab, ns).floor() ),
            IFuncMin(li,ric) => {
                let left = eval_compiled_ref!(get_instr!(slab.cs,li), slab, ns);
                let right = eval_ic_ref!(ric, slab, ns);
                if left.is_nan() || right.is_nan() { return Ok(std::f64::NAN) }  // I need to implement NAN checks myself because the f64.min() function says that if one number is NaN, the other will be returned.
                if left<right {
                    Ok(left)
                } else {
                    Ok(right)
                }
            }
            IFuncMax(li,ric) => {
                let left = eval_compiled_ref!(get_instr!(slab.cs,li), slab, ns);
                let right = eval_ic_ref!(ric, slab, ns);
                if left.is_nan() || right.is_nan() { return Ok(std::f64::NAN) }
                if left>right {
                    Ok(left)
                } else {
                    Ok(right)
                }
            }


            IEQ(left, right) => {
                Ok( bool_to_f64!(f64_eq!(eval_ic_ref!(left, slab, ns),
                                         eval_ic_ref!(right, slab, ns))) )
            }
            INE(left, right) => {
                Ok( bool_to_f64!(f64_ne!(eval_ic_ref!(left, slab, ns),
                                         eval_ic_ref!(right, slab, ns))) )
            }
            ILT(left, right) => {
                Ok( bool_to_f64!(eval_ic_ref!(left, slab, ns) <
                                 eval_ic_ref!(right, slab, ns)) )
            }
            ILTE(left, right) => {
                Ok( bool_to_f64!(eval_ic_ref!(left, slab, ns) <=
                                 eval_ic_ref!(right, slab, ns)) )
            }
            IGTE(left, right) => {
                Ok( bool_to_f64!(eval_ic_ref!(left, slab, ns) >=
                                 eval_ic_ref!(right, slab, ns)) )
            }
            IGT(left, right) => {
                Ok( bool_to_f64!(eval_ic_ref!(left, slab, ns) >
                                 eval_ic_ref!(right, slab, ns)) )
            }

            INot(i) => Ok(bool_to_f64!(f64_eq!(eval_compiled_ref!(get_instr!(slab.cs,i), slab, ns),0.0))),
            IAND(lefti, rightic) => {
                let left = eval_compiled_ref!(get_instr!(slab.cs,lefti), slab, ns);
                if f64_eq!(left,0.0) { Ok(left) }
                else {
                    Ok(eval_ic_ref!(rightic, slab, ns))
                }
            }
            IOR(lefti, rightic) => {
                let left = eval_compiled_ref!(get_instr!(slab.cs,lefti), slab, ns);
                if f64_ne!(left,0.0) { Ok(left) }
                else {
                    Ok(eval_ic_ref!(rightic, slab, ns))
                }
            }


            IPrintFunc(pf) => pf.eval(slab,ns),


            // Put these last because you should be using the eval_compiled*!() macros to eliminate function calls.
            IConst(c) => Ok(*c),
            #[cfg(feature="unsafe-vars")]
            IUnsafeVar{ptr, ..} => unsafe { Ok(**ptr) },
        }
    }
}