1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
//! Fang Oosterlee approach for inverting a characteristic function. 
//! Some useful characteristic functions are provided in the 
//! [cf_functions](https://crates.io/crates/cf_functions) repository.
//! [Link to Fang-Oosterlee paper](http://ta.twi.tudelft.nl/mf/users/oosterle/oosterlee/COS.pdf).
//! 

use num_complex::Complex;
use std::f64::consts::PI;
use rayon::prelude::*;
/**
    Function to compute the difference in successive X nodes.  This can feed into the "getX" function.
    @xDiscrete number of sections to parse the X domain into
    @xMin the minimum of the X domain
    @xMax the maximum of the X domain
    @return the difference between successive x nodes
*/
fn compute_dx(x_discrete:usize, x_min:f64, x_max:f64)->f64{
    (x_max-x_min)/((x_discrete as f64)-1.0)
}

/// Function to compute the discrete U. The operation is cheap 
/// and takes less ram than simply using the computeURange 
/// function to create a vector.  Note that "uMin" is always 
/// zero and hence is unecessary.  This can (should?) be 
/// simply an implementation of a generic "getNode" function 
/// but is broken into two functions to make it explicit and be 
/// more closely aligned with the Fang Oosterlee paper.
/// 
fn get_u(du:f64, index:usize)->f64{
    (index as f64)*du
}

/**
    Function to compute the discrete X.  The operation is cheap and takes less ram than simply using the computeXRange function to create a vector
    @xMin the minimum of the X domain
    @dx the difference between the nodes in X
    @index the location of the node
    @return location of discrete X
*/
fn get_x(x_min:f64, dx: f64, index:usize)->f64{
    x_min+(index as f64)*dx
}

/// Returns iterator over real (x) domain 
/// # Examples
/// ```
/// let x_min = -20.0;
/// let x_max = 25.0;
/// let x_discrete = 10;
/// let x_range=fang_oost::get_x_domain(
///    x_discrete, x_min, x_max
/// );
/// ```
pub fn get_x_domain(x_discrete:usize, x_min:f64, x_max:f64)->impl IndexedParallelIterator<Item = f64>{
    let dx=compute_dx(x_discrete, x_min, x_max);
    (0..x_discrete).into_par_iter().map(move |index| get_x(x_min, dx, index))
}



/// Function to compute the difference in successive U nodes.  
/// This can feed into the "getU" function.  Note that this 
/// depends on X: the U and X domains are not "independent".
fn compute_du(x_min:f64, x_max:f64)->f64{
    PI/(x_max-x_min)
}
/**
    Helper function to get "CP"
    @du Discrete step in u.  Can be computed using compute_du(x_min, x_max)
*/
fn compute_cp(du:f64)->f64{
    (2.0*du)/PI
}

fn get_complex_u(u:f64)->Complex<f64>{
    Complex::<f64>::new(0.0, u)
}

/// Helper function to get complex u domain
/// 
/// # Examples
/// ```
/// let u_discrete = 10;
/// let x_min = -20.0;
/// let x_max = 20.0;
/// let u_domain=fang_oost::get_u_domain(
///     u_discrete,
///     x_min,
///     x_max
/// );
/// ```
pub fn get_u_domain(
    u_discrete:usize, x_min:f64, x_max:f64
)->impl IndexedParallelIterator<Item=Complex<f64> > {
    let du=compute_du(x_min, x_max);
    (0..u_discrete)
        .into_par_iter()
        .map(move |index| get_complex_u(get_u(du, index)))
}


/*Using X only makes sense for 
Levy processes where log(S/K) changes 
for every iteration.  This is done 
separately from the Characteristic
Function for computation purposes.*/
fn convolute_extended<T>(cf_incr:&Complex<f64>, x:f64, u_im:f64, u_index:usize, vk:T)->f64
    where T:Fn(f64, f64, usize)->f64
{
    (cf_incr*(get_complex_u(u_im)*x).exp()).re*vk(u_im, x, u_index) 
}
/*Convolution in standard Fourier space*/
fn convolute_real<T>(cf_incr:&Complex<f64>, x:f64, u_im:f64, u_index:usize, vk:T)->f64
    where T:Fn(f64, f64, usize)->f64
{
    cf_incr.re*vk(u_im, x, u_index)
}


fn adjust_index(index:usize)->f64
{
    if index==0{0.5} else {1.0}
}
fn integrate_cf<S>(
    discrete_cf_adjusted:&[Complex<f64>], 
    du:f64,
    x:f64,
    convolute:S //this can be expensive for extended cf
)->f64
    where S:Fn(&Complex<f64>, f64, f64, usize)->f64+std::marker::Sync+std::marker::Send
{
    discrete_cf_adjusted
        .iter()
        .enumerate()
        .map(|(index, &cf_incr)|{
            let adjusted_cf_incr=cf_incr*adjust_index(index);
            convolute(&adjusted_cf_incr, x, get_u(du, index), index)
        }).sum()
}

fn adjust_cf(
    fn_inv_increment:&Complex<f64>,
    u:Complex<f64>,
    x_min:f64,
    cp:f64
)->Complex<f64>{
    fn_inv_increment*(-u*x_min).exp()*cp
}

fn get_discrete_cf_adjusted(
    x_min:f64,
    x_max:f64,
    fn_inv_vec:&[Complex<f64>]
)->Vec<Complex<f64>>
{
    let du=compute_du(x_min, x_max);
    let cp=compute_cp(du);
    get_u_domain(fn_inv_vec.len(), x_min, x_max) 
        .zip(fn_inv_vec)
        .map(move |(u, fn_inv_element)|{
            adjust_cf(&fn_inv_element, u, x_min, cp)
        }).collect()
}
/// Returns "raw" discrete cf
/// 
/// # Examples
/// ```
/// extern crate num_complex;
/// use num_complex::Complex;
/// extern crate fang_oost;
/// # fn main(){
/// let num_u = 256;
/// let x_min = -20.0;
/// let x_max = 25.0;
/// let mu=2.0;
/// let sigma:f64=5.0;
/// let norm_cf = |u:&Complex<f64>|(u*mu+0.5*u*u*sigma*sigma).exp();
/// let discrete_cf=fang_oost::get_discrete_cf(num_u, x_min, x_max, &norm_cf);
/// # }
/// ```
pub fn get_discrete_cf<T>(
    num_u:usize,
    x_min:f64, 
    x_max:f64,
    cf_fn:T
)->Vec<Complex<f64>>
    where T:Fn(&Complex<f64>)->Complex<f64>+std::marker::Sync+std::marker::Send
{
    get_u_domain(num_u, x_min, x_max).map(|u|cf_fn(&u)).collect::<Vec<_>>()
}

fn get_expectation_generic_single_element<S>(
    x_min:f64,
    x_max:f64,
    x:f64,
    fn_inv_vec:&[Complex<f64>],
    convolute:S
)-> f64
    where 
    S:Fn(&Complex<f64>, f64, f64, usize)->f64+std::marker::Sync+std::marker::Send
{
    let du=compute_du(x_min, x_max);
    integrate_cf(
        &get_discrete_cf_adjusted(
            x_min, x_max, fn_inv_vec
        ), 
        du,
        x, &convolute
    )
}

/**All generic functions will be provided iterators over x 
 * and iterators over RAW characteristic function. 
 */
fn get_expectation_generic<'a, 'b:'a, S, T>(
    x_min:f64,
    x_max:f64,
    x_domain_iterator:T,
    fn_inv_vec:&'b [Complex<f64>],
    convolute:S
)->impl IndexedParallelIterator<Item = f64>+'a+std::marker::Sync+std::marker::Send+'a
    where 
    S:Fn(&Complex<f64>, f64, f64, usize)->f64+std::marker::Sync+std::marker::Send+'a,
    T: IndexedParallelIterator<Item = f64>+std::marker::Sync+std::marker::Send+'a
{
    let du=compute_du(x_min, x_max);
    let discrete_cf_adjusted=get_discrete_cf_adjusted(
        x_min, x_max, fn_inv_vec
    );
    x_domain_iterator.map(move |x|{
        integrate_cf(
            &discrete_cf_adjusted,
            du, 
            x, &convolute
        )
    })
}


/// Returns expectation over equal mesh in the real domain
/// 
/// # Remarks
/// 
/// The "type" of the expectation is handled by the vk function
/// 
/// # Examples
/// ```
/// extern crate num_complex;
/// extern crate fang_oost;
/// use num_complex::Complex;
/// extern crate rayon;
/// use rayon::prelude::*;
/// # fn main() {  
/// let mu = 2.0;
/// let sigma:f64 = 5.0;
/// let num_u = 256;
/// let num_x = 1024;
/// let x_min = -20.0;
/// let x_max = 25.0;
/// let x_domain=fang_oost::get_x_domain(num_x, x_min, x_max);
/// let norm_cf = |u:&Complex<f64>|(u*mu+0.5*u*u*sigma*sigma).exp();
/// let cf_discrete=fang_oost::get_discrete_cf(num_u, x_min, x_max, &norm_cf);
/// let result:Vec<f64>=fang_oost::get_expectation_real(
///     x_min, 
///     x_max, 
///     x_domain,
///     &cf_discrete, 
///     |u_im, x, k|{
///         if k==0{x-x_min} else { ((x-x_min)*u_im).sin()/u_im}
///     }
/// ).collect();
/// # }
/// ```
pub fn get_expectation_real<'a, 'b:'a, S, U>(
    x_min:f64,
    x_max:f64,
    x_domain_iterator:S, 
    discrete_cf:&'b [Complex<f64>],
    vk:U
)->impl IndexedParallelIterator<Item = f64>+'a
    where 
    S: IndexedParallelIterator<Item = f64>+std::marker::Sync+'b,
    U:Fn(f64, f64, usize)->f64+std::marker::Sync+std::marker::Send+'b
{
    get_expectation_generic(
        x_min,
        x_max, 
        x_domain_iterator, 
        discrete_cf,
        move |cf, x, u, i| convolute_real(cf, x, u, i, &vk)
    )
}
/// Returns expectation over equal mesh in the real domain 
/// where characteristic function depends on initial starting point 
/// of a Levy process.
/// 
/// # Remarks
/// 
/// The "type" of the expectation is handled by the vk function. 
/// This function is useful for Levy functions since the characteristic function
/// depends on the initial value of x.  See [fang_oost_option](https://docs.rs/crate/fang_oost_option/0.21.3/source/src/option_pricing.rs)
/// for an example.
/// 
/// # Examples
/// ```
/// extern crate num_complex;
/// extern crate fang_oost;
/// use num_complex::Complex;
/// extern crate rayon;
/// use rayon::prelude::*;
/// # fn main() {  
/// let mu = 2.0;
/// let sigma:f64 = 5.0;
/// let num_u = 256;
/// let num_x = 1024;
/// let x_min = -20.0;
/// let x_max = 25.0;
/// let norm_cf = |u:&Complex<f64>|(u*mu+0.5*u*u*sigma*sigma).exp();
/// let x_domain=fang_oost::get_x_domain(num_x, x_min, x_max);
/// let discrete_cf=fang_oost::get_discrete_cf(num_u, x_min, x_max, &norm_cf);
/// let result:Vec<f64>=fang_oost::get_expectation_extended(
///     x_min, 
///     x_max, 
///     x_domain,
///     &discrete_cf, 
///     |u_im, x, k|{
///         if k==0{x-x_min} else { ((x-x_min)*u_im).sin()/u_im }
///     }
/// ).collect();
/// # }
/// ```
pub fn get_expectation_extended<'a, 'b:'a, S, U>(
    x_min:f64,
    x_max:f64,
    x_domain_iterator:S, 
    discrete_cf:&'b [Complex<f64>],
    vk:U
)->impl IndexedParallelIterator<Item = f64>+'a
    where 
    S: IndexedParallelIterator<Item = f64>+std::marker::Sync+'b,
    U:Fn(f64, f64, usize)->f64+std::marker::Sync+std::marker::Send+'b
{
    get_expectation_generic(
        x_min,
        x_max, 
        x_domain_iterator, 
        discrete_cf,
        move |cf, x, u, i| convolute_extended(cf, x, u, i, &vk)
    )
}

/// Returns expectation at point supplied by the user 
/// 
/// # Remarks
/// The endpoints of the vector should have a large enough 
/// domain for accuracy.  
/// The "type" of the expectation is handled by the vk function. 
/// # Examples
/// ```
/// extern crate num_complex;
/// extern crate fang_oost;
/// use num_complex::Complex;
/// # fn main() {  
/// let x_min = -20.0;
/// let x_max = 25.0;
/// let x = 3.0;
/// let mu=2.0;
/// let sigma:f64=5.0;
/// let num_u=128;
/// let norm_cf = |u:&Complex<f64>|(u*mu+0.5*u*u*sigma*sigma).exp();
/// let discrete_cf=fang_oost::get_discrete_cf(num_u, x_min, x_max, &norm_cf);
/// let result=fang_oost::get_expectation_single_element_real(
///    x_min, x_max, x, &discrete_cf, 
///     |u_im, x, k|{
///         if k==0{x-x_min} else { ((x-x_min)*u_im).sin()/u_im }
///     }
/// );
/// # }
/// ```
pub fn get_expectation_single_element_real<'a,  U>(
    x_min:f64,
    x_max:f64,
    x:f64,
    fn_inv_discrete:&[Complex<f64>],
    vk:U
)->f64
    where 
    U:Fn(f64, f64, usize)->f64+std::marker::Sync+std::marker::Send+'a
{
    get_expectation_generic_single_element(
        x_min, x_max, x, 
        fn_inv_discrete, 
        move |cf, x, u, i| convolute_real(cf, x, u, i, &vk)
    )
}

/// Returns expectation at point supplied by the user 
/// where characteristic function depends on initial starting point.
/// # Remarks
/// The endpoints of the vector should have a large enough 
/// domain for accuracy.  
/// The "type" of the expectation is handled by the vk function. 
/// This function is useful for Levy functions since the characteristic function
/// depends on the initial value of x.  See [fang_oost_option](https://docs.rs/crate/fang_oost_option/0.21.3/source/src/option_pricing.rs)
/// for an example. 
/// # Examples
/// ```
/// extern crate num_complex;
/// extern crate fang_oost;
/// use num_complex::Complex;
/// # fn main() {  
/// let x_min = -20.0;
/// let x_max = 25.0;
/// let x = 3.0;
/// let mu=2.0;
/// let sigma:f64=5.0;
/// let num_u=128;
/// let norm_cf = |u:&Complex<f64>|(u*mu+0.5*u*u*sigma*sigma).exp();
/// let discrete_cf=fang_oost::get_discrete_cf(num_u, x_min, x_max, &norm_cf);
/// let result=fang_oost::get_expectation_single_element_extended(
///     x_min, x_max, x, &discrete_cf, 
///     |u_im, x, k|{
///         if k==0{x-x_min} else { ((x-x_min)*u_im).sin()/u_im }
///     }
/// );
/// # }
/// ```
pub fn get_expectation_single_element_extended<'a,  'b:'a, U>(
    x_min:f64,
    x_max:f64,
    x:f64,
    fn_inv_discrete:&'b [Complex<f64>],
    vk:U
)->f64
    where 
    U:Fn(f64, f64, usize)->f64+std::marker::Sync+std::marker::Send+'a
{
    get_expectation_generic_single_element(
        x_min, x_max, x, 
        fn_inv_discrete, 
        |cf, x, u, i| convolute_extended(cf, x, u, i, &vk)
    )
}
/// Returns iterator over density with domain created by the function
/// 
/// # Examples
/// ```
/// extern crate num_complex;
/// extern crate fang_oost;
/// extern crate rayon;
/// use rayon::prelude::*;
/// use num_complex::Complex;
/// 
/// # fn main() {  
/// let num_x = 1024;
/// let num_u = 256;
/// let x_min = -20.0;
/// let x_max = 25.0;
/// let mu=2.0;
/// let sigma:f64=5.0;
/// let norm_cf = |u:&Complex<f64>|(u*mu+0.5*u*u*sigma*sigma).exp();
/// let x_domain=fang_oost::get_x_domain(num_x, x_min, x_max);
/// let discrete_cf=fang_oost::get_discrete_cf(num_u, x_min, x_max, &norm_cf);
/// let density:Vec<f64> = fang_oost::get_density(
///    x_min, x_max, x_domain, &discrete_cf
/// ).collect();
/// # }
/// ```
pub fn get_density<'a, 'b :'a, S>(
    x_min:f64,
    x_max:f64,
    x_domain_iterator:S,
    fn_inv_vec:&'b [Complex<f64>]
)->impl IndexedParallelIterator<Item = f64>+'a
where 
    S: IndexedParallelIterator<Item = f64>+std::marker::Sync+'b,
{
    get_expectation_real(
        x_min, x_max, 
        x_domain_iterator, fn_inv_vec, 
        move |u, x, _|(u*(x-x_min)).cos()
    )
}

#[cfg(test)]
mod tests {
    use super::*;
    use approx::*;
    fn vk_cdf(
        u:f64, x:f64, a:f64, k:usize
    )->f64{
        if k==0{x-a} else { ((x-a)*u).sin()/u }
    }
    #[test]
    fn test_get_x_domain(){
        assert_eq!(
            get_x_domain(5, 0.0, 1.0).collect::<Vec<f64>>(),
            vec![0.0, 0.25, 0.5, 0.75, 1.0]
        )
    }

    #[test]
    fn test_compute_inv(){
        let mu=2.0;
        let sigma=1.0;
        let num_x=5;
        let num_u=256;
        let x_min=-3.0;
        let x_max=7.0;
        let norm_cf=|u:&Complex<f64>|(u*mu+0.5*u*u*sigma*sigma).exp();
        let my_x_domain=get_x_domain(num_x, x_min, x_max);
        let ref_normal:Vec<f64>=get_x_domain(num_x, x_min, x_max).map(|x|{
            (-(x-mu).powi(2)/(2.0*sigma*sigma)).exp()/(sigma*(2.0*PI).sqrt())
        }).collect();
        let discrete_cf=get_discrete_cf(num_u, x_min, x_max, &norm_cf);
        let my_inverse:Vec<f64>=get_density(
            x_min, x_max, 
            my_x_domain, &discrete_cf
        ).collect();
        
        for (index, x) in ref_normal.iter().enumerate(){
            assert_abs_diff_eq!(*x, my_inverse[index], epsilon=0.001);
        }
    }


    #[test]
    fn test_cdf(){
        let mu=2.0;
        let sigma:f64=5.0;
        
        let num_x=55;
        let num_u=256;
        let x_min=-20.0;
        let x_max=25.0;
        let norm_cf=|u:&Complex<f64>|(u*mu+0.5*u*u*sigma*sigma).exp();
        let x_domain=get_x_domain(num_x, x_min, x_max);
        let ref_normal:Vec<f64>=get_x_domain(num_x, x_min, x_max).map(|x|{
            0.5*statrs::function::erf::erfc(-((x-mu)/sigma)/(2.0 as f64).sqrt())
        }).collect();
        
        let discrete_cf=get_discrete_cf(num_u, x_min, x_max, &norm_cf);
        let result:Vec<f64>=get_expectation_real(
            x_min, x_max, 
            x_domain, &discrete_cf, 
            |u, x, k|{
                vk_cdf(u, x, x_min, k)
            }
        ).collect();
        for (index, x) in ref_normal.iter().enumerate(){
            assert_abs_diff_eq!(*x, result[index], epsilon=0.001);
        }

    }

    #[test]
    fn test_expectation(){
        let mu=2.0;
        let sigma:f64=5.0;
        let num_u=256;
        let x_min=-20.0;
        let x_max=25.0;
        let norm_cf=|u:&Complex<f64>|(u*mu+0.5*u*u*sigma*sigma).exp();
        let discrete_cf=get_discrete_cf(num_u, x_min, x_max, &norm_cf);
        let result:f64=get_expectation_single_element_real(
            x_min, x_max, 2.0, 
            &discrete_cf, 
            |u, x, k|{
                vk_cdf(u, x, x_min, k)
            }
        );
        assert_abs_diff_eq!(0.5, result, epsilon=0.001);

    }
}