1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
//! Madgwick's orientation filter
//!
//! This demo runs Madgwick's orientation filter and logs the orientation of the board as
//! quaternions via the ITM. The data is encoded in binary format and logged as COBS frame. The
//! binary format is as follows:
//!
//! - `w`: `f32`, LE (Little Endian), 4 bytes
//! - `x`: `f32`, LE, 4 bytes
//! - `y`: `f32`, LE, 4 bytes
//! - `z`: `f32`, LE, 4 bytes
//!
//! where the quaternion is the tuple `(w, x, y, z)`
//!
//! The suggested way to receive this data is to connect the F3 SWO pin to a UART to USB converter
//! and then to read out the associated device file using `itmdump`. Make sure you configure the
//! serial device before calling `itmdump`. The commands to run are:
//!
//! ``` console
//! $ stty -F /dev/ttyUSB0 raw 2000000 -echo
//!
//! $ itmdump -f /dev/ttyUSB0 > data.txt
//! ```
//!
//! You can pipe the quaternions through the `viz` program (shipped with this crate) to get real
//! time [visualization]. The command to run is:
//!
//! [visualization]: https://mobile.twitter.com/japaricious/status/962770003325005824
//!
//! ``` console
//! $ itmdump -f /dev/ttyUSB0 | viz
//! ```
//!
//! ```
//! // #![deny(unsafe_code)]
//! #![deny(warnings)]
//! #![no_std]
//! 
//! extern crate aligned;
//! extern crate byteorder;
//! extern crate cast;
//! extern crate cobs;
//! extern crate cortex_m;
//! extern crate f3;
//! extern crate madgwick;
//! #[macro_use(block)]
//! extern crate nb;
//! 
//! use core::ptr;
//! use core::f32::consts::PI;
//! 
//! use aligned::Aligned;
//! use byteorder::{ByteOrder, LE};
//! use cast::{f32, i32};
//! use cortex_m::itm;
//! use f3::hal::i2c::I2c;
//! use f3::hal::prelude::*;
//! use f3::hal::spi::Spi;
//! use f3::hal::stm32f30x;
//! use f3::hal::timer::Timer;
//! use f3::l3gd20::{self, Odr};
//! use f3::lsm303dlhc::{AccelOdr, MagOdr};
//! use f3::{L3gd20, Lsm303dlhc};
//! use madgwick::{F32x3, Marg};
//! 
//! // Number of samples to use for gyroscope calibration
//! const NSAMPLES: i32 = 256;
//! 
//! // Magnetometer calibration parameters
//! // NOTE you need to use the right parameters for *your* magnetometer
//! // You can use the `log-sensors` example to calibrate your magnetometer. The producer is explained
//! // in https://github.com/kriswiner/MPU6050/wiki/Simple-and-Effective-Magnetometer-Calibration
//! const M_BIAS_X: f32 = -34.;
//! const M_SCALE_X: f32 = 650.;
//! 
//! const M_BIAS_Y: f32 = -70.;
//! const M_SCALE_Y: f32 = 636.;
//! 
//! const M_BIAS_Z: f32 = -37.5;
//! const M_SCALE_Z: f32 = 589.5;
//! 
//! // Sensitivities of the accelerometer and gyroscope, respectively
//! const K_G: f32 = 2. / (1 << 15) as f32; // LSB -> g
//! const K_AR: f32 = 8.75e-3 * PI / 180.; // LSB -> rad/s
//! 
//! // Madgwick filter parameters
//! const SAMPLE_FREQ: u32 = 220;
//! const BETA: f32 = 1e-3;
//! 
//! fn main() {
//!     let mut cp = cortex_m::Peripherals::take().unwrap();
//!     let dp = stm32f30x::Peripherals::take().unwrap();
//! 
//!     let mut flash = dp.FLASH.constrain();
//!     let mut rcc = dp.RCC.constrain();
//! 
//!     let clocks = rcc.cfgr
//!         .sysclk(64.mhz())
//!         .pclk1(32.mhz())
//!         .freeze(&mut flash.acr);
//! 
//!     // enable ITM
//!     // TODO this should be some high level API in the cortex-m crate
//!     unsafe {
//!         // enable TPIU and ITM
//!         cp.DCB.demcr.modify(|r| r | (1 << 24));
//! 
//!         // prescaler
//!         let swo_freq = 2_000_000;
//!         cp.TPIU.acpr.write((clocks.sysclk().0 / swo_freq) - 1);
//! 
//!         // SWO NRZ
//!         cp.TPIU.sppr.write(2);
//! 
//!         cp.TPIU.ffcr.modify(|r| r & !(1 << 1));
//! 
//!         // STM32 specific: enable tracing in the DBGMCU_CR register
//!         const DBGMCU_CR: *mut u32 = 0xe0042004 as *mut u32;
//!         let r = ptr::read_volatile(DBGMCU_CR);
//!         ptr::write_volatile(DBGMCU_CR, r | (1 << 5));
//! 
//!         // unlock the ITM
//!         cp.ITM.lar.write(0xC5ACCE55);
//! 
//!         cp.ITM.tcr.write(
//!             (0b000001 << 16) | // TraceBusID
//!             (1 << 3) | // enable SWO output
//!             (1 << 0), // enable the ITM
//!         );
//! 
//!         // enable stimulus port 0
//!         cp.ITM.ter[0].write(1);
//!     }
//! 
//!     let mut gpioa = dp.GPIOA.split(&mut rcc.ahb);
//!     let mut gpiob = dp.GPIOB.split(&mut rcc.ahb);
//!     let mut gpioe = dp.GPIOE.split(&mut rcc.ahb);
//! 
//!     let mut nss = gpioe
//!         .pe3
//!         .into_push_pull_output(&mut gpioe.moder, &mut gpioe.otyper);
//!     nss.set_high();
//!     let mut led = gpioe
//!         .pe9
//!         .into_push_pull_output(&mut gpioe.moder, &mut gpioe.otyper);
//! 
//!     let sck = gpioa.pa5.into_af5(&mut gpioa.moder, &mut gpioa.afrl);
//!     let miso = gpioa.pa6.into_af5(&mut gpioa.moder, &mut gpioa.afrl);
//!     let mosi = gpioa.pa7.into_af5(&mut gpioa.moder, &mut gpioa.afrl);
//! 
//!     let spi = Spi::spi1(
//!         dp.SPI1,
//!         (sck, miso, mosi),
//!         l3gd20::MODE,
//!         1.mhz(),
//!         clocks,
//!         &mut rcc.apb2,
//!     );
//! 
//!     let mut l3gd20 = L3gd20::new(spi, nss).unwrap();
//! 
//!     l3gd20.set_odr(Odr::Hz380).unwrap();
//! 
//!     let scl = gpiob.pb6.into_af4(&mut gpiob.moder, &mut gpiob.afrl);
//!     let sda = gpiob.pb7.into_af4(&mut gpiob.moder, &mut gpiob.afrl);
//! 
//!     let i2c = I2c::i2c1(dp.I2C1, (scl, sda), 400.khz(), clocks, &mut rcc.apb1);
//! 
//!     let mut lsm303dlhc = Lsm303dlhc::new(i2c).unwrap();
//! 
//!     lsm303dlhc.accel_odr(AccelOdr::Hz400).unwrap();
//!     lsm303dlhc.mag_odr(MagOdr::Hz220).unwrap();
//! 
//!     let mut timer = Timer::tim2(dp.TIM2, 380.hz(), clocks, &mut rcc.apb1);
//! 
//!     // Calibrate the gyroscope
//!     let mut ar_bias_x = 0;
//!     let mut ar_bias_y = 0;
//!     let mut ar_bias_z = 0;
//!     for _ in 0..NSAMPLES {
//!         block!(timer.wait()).unwrap();
//! 
//!         let ar = l3gd20.gyro().unwrap();
//! 
//!         ar_bias_x += i32(ar.x);
//!         ar_bias_y += i32(ar.y);
//!         ar_bias_z += i32(ar.z);
//!     }
//!     let ar_bias_x = (ar_bias_x / NSAMPLES) as i16;
//!     let ar_bias_y = (ar_bias_y / NSAMPLES) as i16;
//!     let ar_bias_z = (ar_bias_z / NSAMPLES) as i16;
//! 
//!     // Turn on the LED after calibrating the gyroscope
//!     led.set_high();
//! 
//!     let mut marg = Marg::new(BETA, 1. / f32(SAMPLE_FREQ));
//!     let mut timer = Timer::tim2(timer.free(), SAMPLE_FREQ.hz(), clocks, &mut rcc.apb1);
//! 
//!     let mut tx_buf: Aligned<u32, [u8; 18]> = Aligned([0; 18]);
//!     loop {
//!         block!(timer.wait()).unwrap();
//! 
//!         let m = lsm303dlhc.mag().unwrap();
//!         let ar = l3gd20.gyro().unwrap();
//!         let g = lsm303dlhc.accel().unwrap();
//! 
//!         let m_x = (f32(m.x) - M_BIAS_X) / M_SCALE_X;
//!         let m_y = (f32(m.y) - M_BIAS_Y) / M_SCALE_Y;
//!         let m_z = (f32(m.z) - M_BIAS_Z) / M_SCALE_Z;
//! 
//!         // Fix the X Y Z components of the magnetometer so they match the gyro axes
//!         let m = F32x3 {
//!             x: m_y,
//!             y: -m_x,
//!             z: m_z,
//!         };
//! 
//!         let ar_x = f32(ar.x - ar_bias_x) * K_AR;
//!         let ar_y = f32(ar.y - ar_bias_y) * K_AR;
//!         let ar_z = f32(ar.z - ar_bias_z) * K_AR;
//!         let ar = F32x3 {
//!             x: ar_x,
//!             y: ar_y,
//!             z: ar_z,
//!         };
//! 
//!         // Fix the X Y Z components of the accelerometer so they match the gyro axes
//!         let g_x = f32(g.x) * K_G;
//!         let g_y = f32(g.y) * K_G;
//!         let g_z = f32(g.z) * K_G;
//!         let g = F32x3 {
//!             x: g_y,
//!             y: -g_x,
//!             z: g_z,
//!         };
//! 
//!         // Run the filter
//!         let quat = marg.update(m, ar, g);
//! 
//!         // Serialize the quaternion
//!         let mut start = 0;
//!         let mut buf = [0; 16];
//!         LE::write_f32(&mut buf[start..start + 4], quat.0);
//!         start += 4;
//!         LE::write_f32(&mut buf[start..start + 4], quat.1);
//!         start += 4;
//!         LE::write_f32(&mut buf[start..start + 4], quat.2);
//!         start += 4;
//!         LE::write_f32(&mut buf[start..start + 4], quat.3);
//!         // start += 4;
//! 
//!         // Log data
//!         cobs::encode(&buf, &mut tx_buf.array);
//! 
//!         itm::write_aligned(&mut cp.ITM.stim[0], &tx_buf);
//!     }
//! }
//! ```
// Auto-generated. Do not modify.