1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
// Copyright 2018 Andre-Philippe Paquet
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::collections::VecDeque;
use std::fs::{File, OpenOptions};
use std::io::{BufReader, BufWriter, Error, Read, Seek, SeekFrom, Write};
use std::path::{Path, PathBuf};

use tempdir;

pub struct ExternalSorter {
    max_size: usize,
    sort_dir: Option<PathBuf>,
}

impl ExternalSorter {
    pub fn new() -> ExternalSorter {
        ExternalSorter {
            max_size: 10000,
            sort_dir: None,
        }
    }

    /// Set maximum number of items we can buffer in memory
    pub fn set_max_size(&mut self, max_size: usize) {
        self.max_size = max_size;
    }

    /// Set directory in which sorted segments will be written (if it doesn't fit in memory)
    pub fn set_sort_dir(&mut self, path: PathBuf) {
        self.sort_dir = Some(path);
    }

    /// Sort a given iterator, returning a new iterator with items
    pub fn sort<T, I>(&self, mut iterator: I) -> Result<SortedIterator<T>, Error>
    where
        T: Sortable<T>,
        I: Iterator<Item = T>,
    {
        let mut tempdir: Option<tempdir::TempDir> = None;
        let sort_dir = if let Some(ref sort_dir) = self.sort_dir {
            sort_dir.to_path_buf()
        } else {
            tempdir = Some(tempdir::TempDir::new("sort")?);
            tempdir.as_ref().unwrap().path().to_path_buf()
        };

        let mut segments: Vec<File> = Vec::new();
        let mut buffer: Vec<T> = Vec::new();
        loop {
            let next_item = iterator.next();
            if next_item.is_none() {
                break;
            }

            buffer.push(next_item.unwrap());
            if buffer.len() > self.max_size {
                Self::sort_and_write_segment(&sort_dir, &mut segments, &mut buffer)?;
                buffer.clear();
            }
        }

        // Write any items left in buffer, but only if we had at least 1 segment writen.
        // Otherwise we use the buffer itself to iterate from memory
        let pass_through_queue = if buffer.len() > 0 && segments.len() > 0 {
            Self::sort_and_write_segment(&sort_dir, &mut segments, &mut buffer)?;
            None
        } else {
            buffer.sort();
            Some(VecDeque::from(buffer))
        };

        Ok(SortedIterator::new(tempdir, pass_through_queue, segments))
    }

    fn sort_and_write_segment<T>(
        sort_dir: &Path,
        segments: &mut Vec<File>,
        buffer: &mut [T],
    ) -> Result<(), Error>
    where
        T: Sortable<T>,
    {
        buffer.sort();

        let segment_path = sort_dir.join(format!("{}", segments.len()));
        let file = OpenOptions::new()
            .create(true)
            .truncate(true)
            .read(true)
            .write(true)
            .open(&segment_path)?;
        let mut buf_writer = BufWriter::new(file);
        for item in buffer {
            <T as Sortable<T>>::encode(item, &mut buf_writer);
        }

        let file = buf_writer.into_inner()?;
        segments.push(file);

        Ok(())
    }
}

impl Default for ExternalSorter {
    fn default() -> Self {
        ExternalSorter::new()
    }
}

pub trait Sortable<T>: Eq + Ord {
    fn encode(item: &T, write: &mut Write);
    fn decode(read: &mut Read) -> Option<T>;
}

pub struct SortedIterator<T: Sortable<T>> {
    _tempdir: Option<tempdir::TempDir>,
    pass_through_queue: Option<VecDeque<T>>,
    segments: Vec<BufReader<File>>,
    next_values: Vec<Option<T>>,
}

impl<T: Sortable<T>> SortedIterator<T> {
    fn new(
        tempdir: Option<tempdir::TempDir>,
        pass_through_queue: Option<VecDeque<T>>,
        mut segments: Vec<File>,
    ) -> SortedIterator<T> {
        let next_values = segments
            .iter_mut()
            .map(|file| {
                file.seek(SeekFrom::Start(0)).unwrap();
                Self::read_item(file)
            }).collect();

        let segments = segments
            .into_iter()
            .map(|file| BufReader::new(file))
            .collect();

        SortedIterator {
            _tempdir: tempdir,
            pass_through_queue,
            segments,
            next_values,
        }
    }

    fn read_item(file: &mut Read) -> Option<T> {
        <T as Sortable<T>>::decode(file)
    }
}

impl<T: Sortable<T>> Iterator for SortedIterator<T> {
    type Item = T;

    fn next(&mut self) -> Option<T> {
        // if we have a pass through, we dequeue from it directly
        if let Some(ptb) = self.pass_through_queue.as_mut() {
            return ptb.pop_front();
        }

        // otherwise, we iter from segments on disk
        let mut smallest_idx: Option<usize> = None;
        {
            let mut smallest: Option<&T> = None;
            for idx in 0..self.segments.len() {
                let next_value = self.next_values[idx].as_ref();
                if next_value.is_none() {
                    continue;
                }

                if smallest.is_none() || *next_value.unwrap() < *smallest.unwrap() {
                    smallest = Some(next_value.unwrap());
                    smallest_idx = Some(idx);
                }
            }
        }

        match smallest_idx {
            Some(idx) => {
                let file = self.segments.get_mut(idx).unwrap();
                let value = self.next_values[idx].take().unwrap();
                self.next_values[idx] = Self::read_item(file);
                Some(value)
            }
            None => None,
        }
    }
}

#[cfg(test)]
pub mod test {
    use super::*;

    use self::byteorder::{ReadBytesExt, WriteBytesExt};

    pub extern crate byteorder;

    #[test]
    fn test_smaller_than_segment() {
        let sorter = ExternalSorter::new();
        let data: Vec<u32> = (0..100u32).collect();
        let data_rev: Vec<u32> = data.iter().rev().cloned().collect();

        let sorted_iter = sorter.sort(data_rev.into_iter()).unwrap();

        // should not have used any segments (all in memory)
        assert_eq!(sorted_iter.segments.len(), 0);
        let sorted_data: Vec<u32> = sorted_iter.collect();

        assert_eq!(data, sorted_data);
    }

    #[test]
    fn test_multiple_segments() {
        let mut sorter = ExternalSorter::new();
        sorter.set_max_size(100);
        let data: Vec<u32> = (0..1000u32).collect();

        let data_rev: Vec<u32> = data.iter().rev().cloned().collect();
        let sorted_iter = sorter.sort(data_rev.into_iter()).unwrap();
        assert_eq!(sorted_iter.segments.len(), 10);

        let sorted_data: Vec<u32> = sorted_iter.collect();
        assert_eq!(data, sorted_data);
    }

    impl Sortable<u32> for u32 {
        fn encode(item: &u32, write: &mut Write) {
            write.write_u32::<byteorder::LittleEndian>(*item).unwrap();
        }

        fn decode(read: &mut Read) -> Option<u32> {
            read.read_u32::<byteorder::LittleEndian>().ok()
        }
    }
}