1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
// Rust Bitcoin Library
// Written in 2014 by
//     Andrew Poelstra <apoelstra@wpsoftware.net>
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//

//! Big unsigned integer types
//!
//! Implementation of a various large-but-fixed sized unsigned integer types.
//! The functions here are designed to be fast.
//!
//!
//!Edits to the original Implementation -> We don't use the u128 type at all so I see no need for a
//!macro. I'd rather have the code easier to understand for a newcomer, then have a macro that is
//!only used for one thing.

use encodings::hex::{FromHex, FromHexError, ToHex};
use std::fmt;

#[cfg(feature = "rng")]
use rand::{thread_rng, Rng};

// When Std::iter::Step is finished being implemented add it to this type. That would allow us to
// use for loops much more easily. Right now it's on nightly only -> https://github.com/rust-lang/rust/issues/42168
//TODO expose a zero() function on Uint256 -> Right now the only way to get a 0 is to use default()
//which doesn't feel very natural to how other rust is written.
//
/// A trait which allows numbers to act as fixed-size bit arrays
pub trait BitArray {
    /// Is bit set?
    fn bit(&self, idx: usize) -> bool;

    /// Returns an array which is just the bits from start to end
    fn bit_slice(&self, start: usize, end: usize) -> Self;

    /// Bitwise and with `n` ones
    fn mask(&self, n: usize) -> Self;

    /// Trailing zeros
    fn trailing_zeros(&self) -> usize;

    /// Create all-zeros value
    fn zero() -> Self;

    /// Create value representing one
    fn one() -> Self;
}

// use consensus::encode;
// use util::BitArray;
//TODO what is repr actually used for?
//https://doc.rust-lang.org/nomicon/other-reprs.html -> I'm not sure we are going to be transfering
//this through FFI, so this could probably be removed, but I'll leave this for review.
#[repr(C)]
pub struct Uint256(pub [u64; 4]);

//thing = Uint256
//ty = u64
//expr = 4

//DO we need these lifetimes here? TODO
impl<'a> From<&'a [u64]> for Uint256 {
    fn from(data: &'a [u64]) -> Uint256 {
        assert_eq!(data.len(), 4);
        let mut ret = [0; 4];
        ret.copy_from_slice(&data[..]);
        Uint256(ret)
    }
}

impl From<u32> for Uint256 {
    fn from(value: u32) -> Uint256 {
        let mut ret = [0; 4];
        ret[0] = value as u64;
        Uint256(ret)
    }
}

impl From<u64> for Uint256 {
    fn from(value: u64) -> Uint256 {
        let mut ret = [0; 4];
        ret[0] = value;
        Uint256(ret)
    }
}

impl From<[u8; 32]> for Uint256 {
    fn from(value: [u8; 32]) -> Uint256 {
        let mut ret = [0; 4];
        //TODO this might have to be reversed
        for i in 0..4 {
            let start = 0 + i * 8;
            let end = 8 + i * 8;
            let mut bytes = [0; 8];
            bytes.copy_from_slice(&value[start..end]);
            ret[i] = u64::from_be_bytes(bytes);
        }
        Uint256(ret)
    }
}

impl FromHex for Uint256 {
    type Error = FromHexError;

    fn from_hex<T: AsRef<[u8]>>(hex: T) -> std::result::Result<Self, Self::Error> {
        let bytes = Vec::from_hex(hex)?;
        if bytes.len() != 32 {
            //@todo this should not return this error here. It should actually return invalid
            //Uint256 something like that. The Hex isn't invalid length, the result from the hex
            //is.
            Err(FromHexError::InvalidHexLength)
        } else {
            let mut ret = [0; 32];
            ret.copy_from_slice(&bytes);
            Ok(Uint256::from(ret))
        }
    }
}

impl ::std::ops::Index<usize> for Uint256 {
    type Output = u64;

    #[inline]
    fn index(&self, index: usize) -> &u64 {
        let &Uint256(ref dat) = self;
        &dat[index]
    }
}

impl ::std::ops::Index<::std::ops::Range<usize>> for Uint256 {
    type Output = [u64];

    #[inline]
    fn index(&self, index: ::std::ops::Range<usize>) -> &[u64] {
        &self.0[index]
    }
}

impl ::std::ops::Index<::std::ops::RangeTo<usize>> for Uint256 {
    type Output = [u64];

    #[inline]
    fn index(&self, index: ::std::ops::RangeTo<usize>) -> &[u64] {
        &self.0[index]
    }
}

impl ::std::ops::Index<::std::ops::RangeFrom<usize>> for Uint256 {
    type Output = [u64];

    #[inline]
    fn index(&self, index: ::std::ops::RangeFrom<usize>) -> &[u64] {
        &self.0[index]
    }
}

impl ::std::ops::Index<::std::ops::RangeFull> for Uint256 {
    type Output = [u64];

    #[inline]
    fn index(&self, _: ::std::ops::RangeFull) -> &[u64] {
        &self.0[..]
    }
}

impl PartialEq for Uint256 {
    #[inline]
    fn eq(&self, other: &Uint256) -> bool {
        &self[..] == &other[..]
    }
}

impl Eq for Uint256 {}

impl PartialOrd for Uint256 {
    #[inline]
    fn partial_cmp(&self, other: &Uint256) -> Option<::std::cmp::Ordering> {
        Some(self.cmp(&other))
    }
}

impl Ord for Uint256 {
    #[inline]
    fn cmp(&self, other: &Uint256) -> ::std::cmp::Ordering {
        // manually implement comparison to get little-endian ordering
        // (we need this for our numeric types; non-numeric ones shouldn't
        // be ordered anyway except to put them in BTrees or whatever, and
        // they don't care how we order as long as we're consistent).
        for i in 0..4 {
            if self[4 - 1 - i] < other[4 - 1 - i] {
                return ::std::cmp::Ordering::Less;
            }
            if self[4 - 1 - i] > other[4 - 1 - i] {
                return ::std::cmp::Ordering::Greater;
            }
        }
        ::std::cmp::Ordering::Equal
    }
}

#[cfg_attr(feature = "clippy", allow(expl_impl_clone_on_copy))] // we don't define the `struct`, we have to explicitly impl
impl Clone for Uint256 {
    #[inline]
    fn clone(&self) -> Uint256 {
        Uint256::from(&self[..])
    }
}

impl Copy for Uint256 {}

impl Uint256 {
    #[cfg(feature = "rng")]
    pub fn random() -> Self {
        let mut rng = thread_rng();

        let mut arr = [0_u64; 4];
        rng.fill(&mut arr);

        Uint256(arr)
    }

    #[inline]
    /// Converts the object to a raw pointer
    pub fn as_ptr(&self) -> *const u64 {
        let &Uint256(ref dat) = self;
        dat.as_ptr()
    }

    #[inline]
    /// Converts the object to a mutable raw pointer
    pub fn as_mut_ptr(&mut self) -> *mut u64 {
        let &mut Uint256(ref mut dat) = self;
        dat.as_mut_ptr()
    }

    #[inline]
    /// Returns the length of the object as an array
    pub fn len(&self) -> usize {
        4
    }

    #[inline]
    /// Returns whether the object, as an array, is empty. Always false.
    pub fn is_empty(&self) -> bool {
        false
    }

    //@todo
    // #[inline]
    // pub fn to_hex(&self) -> String {
    //     hex::encode(self.to_le_bytes())
    // }

    #[inline]
    /// Returns the underlying bytes.
    pub fn as_bytes(&self) -> &[u64; 4] {
        &self.0
    }

    #[inline]
    //Remove old Bytes functions TODO move them to returning u8
    //XXX Giant todo, do not forget these, or we will have unstandarized function returns.
    /// Returns the underlying bytes.
    pub fn to_bytes(&self) -> [u64; 4] {
        self.0.clone()
    }

    #[inline]
    //Returns little endian bytes
    pub fn to_le_bytes(&self) -> [u8; 32] {
        let mut bytes = [0; 32];
        for i in 0..4 {
            //Ugly rewrite this code to be more efficient...
            let le_bytes = self.0[i].to_le_bytes();

            bytes[8 * i] = le_bytes[0];
            bytes[1 + 8 * i] = le_bytes[1];
            bytes[2 + 8 * i] = le_bytes[2];
            bytes[3 + 8 * i] = le_bytes[3];

            //Second half
            bytes[4 + 8 * i] = le_bytes[4];
            bytes[5 + 8 * i] = le_bytes[5];
            bytes[6 + 8 * i] = le_bytes[6];
            bytes[7 + 8 * i] = le_bytes[7];
        }

        bytes
    }

    /// The maximum value which can be inhabited by this type.
    #[inline]
    pub fn max_value() -> Self {
        let mut result = [0; 4];
        for i in 0..4 {
            result[i] = u64::max_value();
        }
        Uint256(result)
    }

    #[inline]
    /// Returns the underlying bytes.
    pub fn into_bytes(self) -> [u64; 4] {
        self.0
    }

    /// Conversion to u32
    #[inline]
    pub fn low_u32(&self) -> u32 {
        let &Uint256(ref arr) = self;
        arr[0] as u32
    }

    /// Conversion to u64
    #[inline]
    pub fn low_u64(&self) -> u64 {
        let &Uint256(ref arr) = self;
        arr[0] as u64
    }

    /// Return the least number of bits needed to represent the number
    #[inline]
    pub fn bits(&self) -> usize {
        let &Uint256(ref arr) = self;
        for i in 1..4 {
            if arr[4 - i] > 0 {
                return (0x40 * (4 - i + 1)) - arr[4 - i].leading_zeros() as usize;
            }
        }
        0x40 - arr[0].leading_zeros() as usize
    }

    /// Multiplication by u32
    pub fn mul_u32(self, other: u32) -> Uint256 {
        let Uint256(ref arr) = self;
        let mut carry = [0u64; 4];
        let mut ret = [0u64; 4];
        for i in 0..4 {
            let not_last_word = i < 4 - 1;
            let upper = other as u64 * (arr[i] >> 32);
            let lower = other as u64 * (arr[i] & 0xFFFFFFFF);
            if not_last_word {
                carry[i + 1] += upper >> 32;
            }
            let (sum, overflow) = lower.overflowing_add(upper << 32);
            ret[i] = sum;
            if overflow && not_last_word {
                carry[i + 1] += 1;
            }
        }
        Uint256(ret) + Uint256(carry)
    }

    /// Create an object from a given unsigned 64-bit integer
    pub fn from_u64(init: u64) -> Option<Uint256> {
        let mut ret = [0; 4];
        ret[0] = init;
        Some(Uint256(ret))
    }

    /// Create an object from a given signed 64-bit integer
    pub fn from_i64(init: i64) -> Option<Uint256> {
        assert!(init >= 0);
        Uint256::from_u64(init as u64)
    }

    /// Converts from big endian representation bytes in memory.
    // TODO write a test for this please.
    pub fn from_big_endian(slice: &[u8]) -> Self {
        assert!(4 * 8 >= slice.len());
        assert!(slice.len() % 8 == 0);
        //TODO this may need to be reworked for various size arrays, test this.
        let mut ret = [0; 4];
        let length = slice.len() / 8;
        //TODO this might have to be reversed
        for i in 0..length {
            let start = 0 + i * 8;
            let end = 8 + i * 8;
            let mut bytes = [0; 8];
            bytes.copy_from_slice(&slice[start..end]);
            ret[3 - i] = u64::from_be_bytes(bytes);
        }

        Uint256(ret)
    }

    //TODO this might or might not work. Needs a lot of testing here.
    pub fn from_bytes(slice: &[u8]) -> Self {
        assert!(4 * 8 >= slice.len());
        assert!(slice.len() % 8 == 0);
        //TODO this may need to be reworked for various size arrays, test this.
        let mut ret = [0; 4];
        let length = slice.len() / 8;
        //TODO this might have to be reversed
        for i in 0..length {
            let start = 0 + i * 8;
            let end = 8 + i * 8;
            let mut bytes = [0; 8];
            bytes.copy_from_slice(&slice[start..end]);
            ret[i] = u64::from_le_bytes(bytes);
        }

        Uint256(ret)
    }

    #[inline]
    pub fn increment(&mut self) {
        let &mut Uint256(ref mut arr) = self;
        arr[0] += 1;
        if arr[0] == 0 {
            arr[1] += 1;
            if arr[1] == 0 {
                arr[2] += 1;
                if arr[2] == 0 {
                    arr[3] += 1;
                }
            }
        }
    }
}

impl ::std::ops::Add<Uint256> for Uint256 {
    type Output = Uint256;

    fn add(self, other: Uint256) -> Uint256 {
        let Uint256(ref me) = self;
        let Uint256(ref you) = other;
        let mut ret = [0u64; 4];
        let mut carry = [0u64; 4];
        let mut b_carry = false;
        for i in 0..4 {
            ret[i] = me[i].wrapping_add(you[i]);
            if i < 4 - 1 && ret[i] < me[i] {
                carry[i + 1] = 1;
                b_carry = true;
            }
        }
        if b_carry {
            Uint256(ret) + Uint256(carry)
        } else {
            Uint256(ret)
        }
    }
}

impl ::std::ops::Sub<Uint256> for Uint256 {
    type Output = Uint256;

    #[inline]
    fn sub(self, other: Uint256) -> Uint256 {
        //TODO should this be Uint256::one()?
        self + !other + BitArray::one()
    }
}

impl ::std::ops::Mul<Uint256> for Uint256 {
    type Output = Uint256;

    fn mul(self, other: Uint256) -> Uint256 {
        let mut me = Uint256::zero();
        // TODO: be more efficient about this
        for i in 0..(2 * 4) {
            let to_mul = (other >> (32 * i)).low_u32();
            me = me + (self.mul_u32(to_mul) << (32 * i));
        }
        me
    }
}

impl ::std::ops::Div<Uint256> for Uint256 {
    type Output = Uint256;

    fn div(self, other: Uint256) -> Uint256 {
        let mut sub_copy = self;
        let mut shift_copy = other;
        let mut ret = [0u64; 4];

        let my_bits = self.bits();
        let your_bits = other.bits();

        // Check for division by 0
        assert!(your_bits != 0);

        // Early return in case we are dividing by a larger number than us
        if my_bits < your_bits {
            return Uint256(ret);
        }

        // Bitwise long division
        let mut shift = my_bits - your_bits;
        shift_copy = shift_copy << shift;
        loop {
            if sub_copy >= shift_copy {
                ret[shift / 64] |= 1 << (shift % 64);
                sub_copy = sub_copy - shift_copy;
            }
            shift_copy = shift_copy >> 1;
            if shift == 0 {
                break;
            }
            shift -= 1;
        }

        Uint256(ret)
    }
}

/// Little-endian large integer type
// impl_array_newtype!($name, u64, $n_words);

impl BitArray for Uint256 {
    #[inline]
    fn bit(&self, index: usize) -> bool {
        let &Uint256(ref arr) = self;
        arr[index / 64] & (1 << (index % 64)) != 0
    }

    #[inline]
    fn bit_slice(&self, start: usize, end: usize) -> Uint256 {
        (*self >> start).mask(end - start)
    }

    #[inline]
    fn mask(&self, n: usize) -> Uint256 {
        let &Uint256(ref arr) = self;
        let mut ret = [0; 4];
        for i in 0..4 {
            if n >= 0x40 * (i + 1) {
                ret[i] = arr[i];
            } else {
                ret[i] = arr[i] & ((1 << (n - 0x40 * i)) - 1);
                break;
            }
        }
        Uint256(ret)
    }

    #[inline]
    fn trailing_zeros(&self) -> usize {
        let &Uint256(ref arr) = self;
        for i in 0..(4 - 1) {
            if arr[i] > 0 {
                return (0x40 * i) + arr[i].trailing_zeros() as usize;
            }
        }
        (0x40 * (4 - 1)) + arr[4 - 1].trailing_zeros() as usize
    }

    fn zero() -> Uint256 {
        Uint256([0; 4])
    }

    fn one() -> Uint256 {
        Uint256({
            let mut ret = [0; 4];
            ret[0] = 1;
            ret
        })
    }
}

impl ::std::default::Default for Uint256 {
    fn default() -> Uint256 {
        BitArray::zero()
    }
}

impl ::std::ops::BitAnd<Uint256> for Uint256 {
    type Output = Uint256;

    #[inline]
    fn bitand(self, other: Uint256) -> Uint256 {
        let Uint256(ref arr1) = self;
        let Uint256(ref arr2) = other;
        let mut ret = [0u64; 4];
        for i in 0..4 {
            ret[i] = arr1[i] & arr2[i];
        }
        Uint256(ret)
    }
}

impl ::std::ops::BitXor<Uint256> for Uint256 {
    type Output = Uint256;

    #[inline]
    fn bitxor(self, other: Uint256) -> Uint256 {
        let Uint256(ref arr1) = self;
        let Uint256(ref arr2) = other;
        let mut ret = [0u64; 4];
        for i in 0..4 {
            ret[i] = arr1[i] ^ arr2[i];
        }
        Uint256(ret)
    }
}

impl ::std::ops::BitOr<Uint256> for Uint256 {
    type Output = Uint256;

    #[inline]
    fn bitor(self, other: Uint256) -> Uint256 {
        let Uint256(ref arr1) = self;
        let Uint256(ref arr2) = other;
        let mut ret = [0u64; 4];
        for i in 0..4 {
            ret[i] = arr1[i] | arr2[i];
        }
        Uint256(ret)
    }
}

impl ::std::ops::Not for Uint256 {
    type Output = Uint256;

    #[inline]
    fn not(self) -> Uint256 {
        let Uint256(ref arr) = self;
        let mut ret = [0u64; 4];
        for i in 0..4 {
            ret[i] = !arr[i];
        }
        Uint256(ret)
    }
}

impl ::std::ops::Shl<usize> for Uint256 {
    type Output = Uint256;

    fn shl(self, shift: usize) -> Uint256 {
        let Uint256(ref original) = self;
        let mut ret = [0u64; 4];
        let word_shift = shift / 64;
        let bit_shift = shift % 64;
        for i in 0..4 {
            // Shift
            if bit_shift < 64 && i + word_shift < 4 {
                ret[i + word_shift] += original[i] << bit_shift;
            }
            // Carry
            if bit_shift > 0 && i + word_shift + 1 < 4 {
                ret[i + word_shift + 1] += original[i] >> (64 - bit_shift);
            }
        }
        Uint256(ret)
    }
}

impl ::std::ops::Shr<usize> for Uint256 {
    type Output = Uint256;

    fn shr(self, shift: usize) -> Uint256 {
        let Uint256(ref original) = self;
        let mut ret = [0u64; 4];
        let word_shift = shift / 64;
        let bit_shift = shift % 64;
        for i in word_shift..4 {
            // Shift
            ret[i - word_shift] += original[i] >> bit_shift;
            // Carry
            if bit_shift > 0 && i < 4 - 1 {
                ret[i - word_shift] += original[i + 1] << (64 - bit_shift);
            }
        }
        Uint256(ret)
    }
}

//@todo I'm going to preface this with a huge @todo and @smells. We need to thoroughly review the
//fcuntionality and the endianness of this struct. I've been experiencing weird issues with how we
//are printing out these strings, and it's even more relevant now that we are playing w/ Targets
//and block hashes quite often. So Im going to have this fuction work for LE, but I want to come
//back and review extensively.
impl ToHex for Uint256 {
    fn to_hex(&self) -> String {
        let mut hex = "".to_owned();
        for bytes in self.0.iter() {
            hex.push_str(&bytes.to_le_bytes().to_vec().to_hex());
        }

        hex
    }
}

//TODO convert these to hex?
impl fmt::Debug for Uint256 {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let &Uint256(ref data) = self;
        write!(f, "0x")?;
        for ch in data.iter().rev() {
            write!(f, "{:016x}", ch)?;
        }
        Ok(())
    }
}

impl fmt::Display for Uint256 {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        <fmt::Debug>::fmt(self, f)
    }
}

#[cfg(feature = "serialization")]
impl serde::Serialize for Uint256 {
    fn serialize<S: serde::Serializer>(&self, s: S) -> std::result::Result<S::Ok, S::Error> {
        if s.is_human_readable() {
            s.serialize_str(&self.to_hex())
        } else {
            s.serialize_bytes(&self.to_le_bytes())
        }
    }
}

#[cfg(feature = "serialization")]
impl<'de> serde::Deserialize<'de> for Uint256 {
    fn deserialize<D: serde::Deserializer<'de>>(d: D) -> std::result::Result<Uint256, D::Error> {
        if d.is_human_readable() {
            struct HexVisitor;

            impl<'de> serde::de::Visitor<'de> for HexVisitor {
                type Value = Uint256;

                fn expecting(&self, formatter: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
                    formatter.write_str("an ASCII hex string")
                }

                fn visit_bytes<E>(self, v: &[u8]) -> std::result::Result<Self::Value, E>
                where
                    E: ::serde::de::Error,
                {
                    if let Ok(hex) = ::std::str::from_utf8(v) {
                        Uint256::from_hex(hex).map_err(E::custom)
                    } else {
                        return Err(E::invalid_value(serde::de::Unexpected::Bytes(v), &self));
                    }
                }

                fn visit_str<E>(self, v: &str) -> std::result::Result<Self::Value, E>
                where
                    E: ::serde::de::Error,
                {
                    Uint256::from_hex(v).map_err(E::custom)
                }
            }

            d.deserialize_str(HexVisitor)
        } else {
            struct BytesVisitor;

            impl<'de> ::serde::de::Visitor<'de> for BytesVisitor {
                type Value = Uint256;

                fn expecting(&self, formatter: &mut std::fmt::Formatter) -> std::fmt::Result {
                    formatter.write_str("a bytestring")
                }

                fn visit_bytes<E>(self, v: &[u8]) -> std::result::Result<Self::Value, E>
                where
                    E: ::serde::de::Error,
                {
                    if v.len() != 32 {
                        Err(E::invalid_length(v.len(), &stringify!(32)))
                    } else {
                        let mut ret = [0; 32];
                        ret.copy_from_slice(v);
                        Ok(Uint256::from(ret))
                    }
                }
            }

            d.deserialize_bytes(BytesVisitor)
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    pub fn uint256_bits_test() {
        assert_eq!(Uint256::from_u64(255).unwrap().bits(), 8);
        assert_eq!(Uint256::from_u64(256).unwrap().bits(), 9);
        assert_eq!(Uint256::from_u64(300).unwrap().bits(), 9);
        assert_eq!(Uint256::from_u64(60000).unwrap().bits(), 16);
        assert_eq!(Uint256::from_u64(70000).unwrap().bits(), 17);

        // Try to read the following lines out loud quickly
        let mut shl = Uint256::from_u64(70000).unwrap();
        shl = shl << 100;
        assert_eq!(shl.bits(), 117);
        shl = shl << 100;
        assert_eq!(shl.bits(), 217);
        shl = shl << 100;
        assert_eq!(shl.bits(), 0);

        // Bit set check
        assert!(!Uint256::from_u64(10).unwrap().bit(0));
        assert!(Uint256::from_u64(10).unwrap().bit(1));
        assert!(!Uint256::from_u64(10).unwrap().bit(2));
        assert!(Uint256::from_u64(10).unwrap().bit(3));
        assert!(!Uint256::from_u64(10).unwrap().bit(4));
    }

    #[test]
    pub fn uint256_display_test() {
        assert_eq!(
            format!("{}", Uint256::from_u64(0xDEADBEEF).unwrap()),
            "0x00000000000000000000000000000000000000000000000000000000deadbeef"
        );
        assert_eq!(
            format!("{}", Uint256::from_u64(u64::max_value()).unwrap()),
            "0x000000000000000000000000000000000000000000000000ffffffffffffffff"
        );

        let max_val = Uint256([
            0xFFFFFFFFFFFFFFFF,
            0xFFFFFFFFFFFFFFFF,
            0xFFFFFFFFFFFFFFFF,
            0xFFFFFFFFFFFFFFFF,
        ]);
        assert_eq!(
            format!("{}", max_val),
            "0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
        );
    }

    #[test]
    pub fn uint256_comp_test() {
        let small = Uint256([10u64, 0, 0, 0]);
        let big = Uint256([0x8C8C3EE70C644118u64, 0x0209E7378231E632, 0, 0]);
        let bigger = Uint256([0x9C8C3EE70C644118u64, 0x0209E7378231E632, 0, 0]);
        let biggest = Uint256([0x5C8C3EE70C644118u64, 0x0209E7378231E632, 0, 1]);

        assert!(small < big);
        assert!(big < bigger);
        assert!(bigger < biggest);
        assert!(bigger <= biggest);
        assert!(biggest <= biggest);
        assert!(bigger >= big);
        assert!(bigger >= small);
        assert!(small <= small);
    }

    #[test]
    pub fn uint256_arithmetic_test() {
        let init = Uint256::from_u64(0xDEADBEEFDEADBEEF).unwrap();
        let copy = init;

        let add = init + copy;
        assert_eq!(add, Uint256([0xBD5B7DDFBD5B7DDEu64, 1, 0, 0]));
        // Bitshifts
        let shl = add << 88;
        assert_eq!(shl, Uint256([0u64, 0xDFBD5B7DDE000000, 0x1BD5B7D, 0]));
        let shr = shl >> 40;
        assert_eq!(
            shr,
            Uint256([0x7DDE000000000000u64, 0x0001BD5B7DDFBD5B, 0, 0])
        );
        // Increment
        let mut incr = shr;
        incr.increment();
        assert_eq!(
            incr,
            Uint256([0x7DDE000000000001u64, 0x0001BD5B7DDFBD5B, 0, 0])
        );
        // Subtraction
        let sub = incr - init;
        assert_eq!(
            sub,
            Uint256([0x9F30411021524112u64, 0x0001BD5B7DDFBD5A, 0, 0])
        );
        // Multiplication
        let mult = sub.mul_u32(300);
        assert_eq!(
            mult,
            Uint256([0x8C8C3EE70C644118u64, 0x0209E7378231E632, 0, 0])
        );
        // Division
        assert_eq!(
            Uint256::from_u64(105).unwrap() / Uint256::from_u64(5).unwrap(),
            Uint256::from_u64(21).unwrap()
        );
        let div = mult / Uint256::from_u64(300).unwrap();
        assert_eq!(
            div,
            Uint256([0x9F30411021524112u64, 0x0001BD5B7DDFBD5A, 0, 0])
        );
        // TODO: bit inversion
    }

    #[test]
    pub fn mul_u32_test() {
        let u64_val = Uint256::from_u64(0xDEADBEEFDEADBEEF).unwrap();

        let u96_res = u64_val.mul_u32(0xFFFFFFFF);
        let u128_res = u96_res.mul_u32(0xFFFFFFFF);
        let u160_res = u128_res.mul_u32(0xFFFFFFFF);
        let u192_res = u160_res.mul_u32(0xFFFFFFFF);
        let u224_res = u192_res.mul_u32(0xFFFFFFFF);
        let u256_res = u224_res.mul_u32(0xFFFFFFFF);

        assert_eq!(u96_res, Uint256([0xffffffff21524111u64, 0xDEADBEEE, 0, 0]));
        assert_eq!(
            u128_res,
            Uint256([0x21524111DEADBEEFu64, 0xDEADBEEE21524110, 0, 0])
        );
        assert_eq!(
            u160_res,
            Uint256([0xBD5B7DDD21524111u64, 0x42A4822200000001, 0xDEADBEED, 0])
        );
        assert_eq!(
            u192_res,
            Uint256([
                0x63F6C333DEADBEEFu64,
                0xBD5B7DDFBD5B7DDB,
                0xDEADBEEC63F6C334,
                0
            ])
        );
        assert_eq!(
            u224_res,
            Uint256([
                0x7AB6FBBB21524111u64,
                0xFFFFFFFBA69B4558,
                0x854904485964BAAA,
                0xDEADBEEB
            ])
        );
        assert_eq!(
            u256_res,
            Uint256([
                0xA69B4555DEADBEEFu64,
                0xA69B455CD41BB662,
                0xD41BB662A69B4550,
                0xDEADBEEAA69B455C
            ])
        );
    }

    #[test]
    pub fn multiplication_test() {
        let u64_val = Uint256::from_u64(0xDEADBEEFDEADBEEF).unwrap();

        let u128_res = u64_val * u64_val;

        assert_eq!(
            u128_res,
            Uint256([0x048D1354216DA321u64, 0xC1B1CD13A4D13D46, 0, 0])
        );

        let u256_res = u128_res * u128_res;

        assert_eq!(
            u256_res,
            Uint256([
                0xF4E166AAD40D0A41u64,
                0xF5CF7F3618C2C886u64,
                0x4AFCFF6F0375C608u64,
                0x928D92B4D7F5DF33u64
            ])
        );
    }

    #[test]
    pub fn uint256_bitslice_test() {
        let init = Uint256::from_u64(0xDEADBEEFDEADBEEF).unwrap();
        let add = init + (init << 64);
        assert_eq!(add.bit_slice(64, 128), init);
        assert_eq!(add.mask(64), init);
    }

    #[test]
    pub fn uint256_extreme_bitshift_test() {
        // Shifting a u64 by 64 bits gives an undefined value, so make sure that
        // we're doing the Right Thing here
        let init = Uint256::from_u64(0xDEADBEEFDEADBEEF).unwrap();

        assert_eq!(init << 64, Uint256([0, 0xDEADBEEFDEADBEEF, 0, 0]));
        let add = (init << 64) + init;
        assert_eq!(add, Uint256([0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF, 0, 0]));
        assert_eq!(
            add >> 0,
            Uint256([0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF, 0, 0])
        );
        assert_eq!(
            add << 0,
            Uint256([0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF, 0, 0])
        );
        assert_eq!(add >> 64, Uint256([0xDEADBEEFDEADBEEF, 0, 0, 0]));
        assert_eq!(
            add << 64,
            Uint256([0, 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF, 0])
        );
    }

    #[cfg(feature = "rng")]
    #[test]
    pub fn uint256_random() {
        let random = Uint256::random();
        dbg!(random);
    }
}

//TODO add tests for serialization here.