1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
// Copyright 2020 The Exonum Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

pub use crate::ValidationError; // TODO Change for a type alias after EJB switching to rust > 1.36 (ECR-3827)

use exonum_crypto::Hash;
use serde::{Deserializer, Serializer};
use serde_derive::{Deserialize, Serialize};
use thiserror::Error;

use std::{borrow::Cow, marker::PhantomData};

use super::{
    key::{BitsRange, ChildKind, ProofPath, KEY_SIZE},
    node::BranchNode,
};
use crate::{BinaryValue, HashTag, ObjectHash};

use crate::indexes::proof_map::key::{Hashed, ToProofPath};

impl serde::Serialize for ProofPath {
    fn serialize<S>(&self, ser: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        let mut repr = String::with_capacity(KEY_SIZE * 8);
        for index in 0..self.len() {
            match self.bit(index) {
                ChildKind::Left => {
                    repr.push('0');
                }
                ChildKind::Right => {
                    repr.push('1');
                }
            }
        }
        ser.serialize_str(&repr)
    }
}

#[allow(clippy::use_self)]
impl<'de> serde::Deserialize<'de> for ProofPath {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: Deserializer<'de>,
    {
        use serde::de::{self, Unexpected, Visitor};
        use std::fmt;

        struct ProofPathVisitor;

        impl<'de> Visitor<'de> for ProofPathVisitor {
            type Value = ProofPath;

            fn expecting(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
                write!(
                    formatter,
                    "binary string with length between 1 and {}",
                    KEY_SIZE * 8
                )
            }

            fn visit_str<E>(self, value: &str) -> Result<ProofPath, E>
            where
                E: de::Error,
            {
                let len = value.len();
                if len == 0 || len > 8 * KEY_SIZE {
                    return Err(de::Error::invalid_value(Unexpected::Str(value), &self));
                }

                let mut bytes = [0_u8; KEY_SIZE];
                for (i, ch) in value.chars().enumerate() {
                    match ch {
                        '0' => {}
                        '1' => bytes[i / 8] += 1 << (i % 8),
                        _ => return Err(de::Error::invalid_value(Unexpected::Str(value), &self)),
                    }
                }

                Ok(if len == 8 * KEY_SIZE {
                    ProofPath::from_bytes(&bytes)
                } else {
                    ProofPath::from_bytes(&bytes).prefix(len as u16)
                })
            }
        }

        deserializer.deserialize_str(ProofPathVisitor)
    }
}

/// An error returned when a map proof is invalid.
#[derive(Debug, Error)]
#[non_exhaustive]
pub enum MapProofError {
    /// Non-terminal node for a map consisting of a single node.
    #[error("non-terminal node as a single key in the proof")]
    NonTerminalNode(ProofPath),

    /// One path in the proof is a prefix of another path.
    #[error("embedded paths in the proof")]
    EmbeddedPaths {
        /// Prefix key.
        prefix: ProofPath,
        /// Key containing the prefix.
        path: ProofPath,
    },

    /// One path is mentioned several times in the proof.
    #[error("duplicate path in the proof")]
    DuplicatePath(ProofPath),

    /// Entries in the proof are not ordered by increasing path.
    #[error("invalid path ordering")]
    InvalidOrdering(ProofPath, ProofPath),
}

// Used instead of `(ProofPath, Hash)` only for the purpose of clearer (de)serialization.
#[derive(Debug, Clone, Copy, PartialEq, Serialize, Deserialize)]
struct MapProofEntry {
    path: ProofPath,
    hash: Hash,
}

// Used instead of `(K, Option<V>)` only for the purpose of clearer (de)serialization.
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
#[serde(untagged)]
enum OptionalEntry<K, V> {
    Missing { missing: K },
    KV { key: K, value: V },
}

impl<K, V> OptionalEntry<K, V> {
    fn missing(key: K) -> Self {
        Self::Missing { missing: key }
    }

    fn value(key: K, value: V) -> Self {
        Self::KV { key, value }
    }

    fn key(&self) -> &K {
        match self {
            Self::Missing { missing } => missing,
            Self::KV { key, .. } => key,
        }
    }

    fn as_missing(&self) -> Option<&K> {
        match self {
            Self::Missing { missing } => Some(missing),
            _ => None,
        }
    }

    fn as_kv(&self) -> Option<(&K, &V)> {
        match self {
            Self::KV { key, value } => Some((key, value)),
            _ => None,
        }
    }

    fn as_tuple(&self) -> (&K, Option<&V>) {
        match self {
            Self::Missing { missing } => (missing, None),
            Self::KV { key, value } => (key, Some(value)),
        }
    }
}

/// View of a `ProofMapIndex`, i.e., a subset of its elements coupled with a *proof*,
/// which jointly allow restoring the `object_hash()` of the index. Apart from the
/// existing elements, `MapProof` can assert absence of certain keys from the underlying
/// index.
///
/// # Workflow
///
/// You can create `MapProof`s with [`get_proof()`] and [`get_multiproof()`] methods of
/// `ProofMapIndex`. Proofs can be verified on the server side with the help of
/// [`check()`]. Prior to the `check` conversion, you may use `*unchecked` methods
/// to obtain information about the proof.
///
/// ```
/// # use exonum_merkledb::{
/// #     access::CopyAccessExt, Database, TemporaryDB, BinaryValue, MapProof, ObjectHash,
/// # };
/// # use exonum_crypto::hash;
/// # fn main() -> anyhow::Result<()> {
/// let fork = { let db = TemporaryDB::new(); db.fork() };
/// let mut map = fork.get_proof_map("index");
/// let (h1, h2, h3) = (hash(&[1]), hash(&[2]), hash(&[3]));
/// map.put(&h1, 100u32);
/// map.put(&h2, 200u32);
///
/// // Get the proof from the index.
/// let proof = map.get_multiproof(vec![h1, h3]);
///
/// // Check the proof consistency.
/// let checked_proof = proof.check()?;
/// assert!(checked_proof.entries().eq(vec![(&h1, &100u32)]));
/// assert!(checked_proof.missing_keys().eq(vec![&h3]));
/// assert_eq!(checked_proof.index_hash(), map.object_hash());
///
/// // If the trusted list hash is known, there is a convenient method
/// // to combine integrity check and hash equality check.
/// let checked_proof = proof.check_against_hash(map.object_hash())?;
/// # Ok(())
/// # }
/// ```
///
/// # JSON serialization
///
/// `MapProof` is serialized to JSON as an object with 2 array fields:
///
/// - `proof` is an array of `{ path: ProofPath, hash: Hash }` objects.
/// - `entries` is an array with 2 kinds of objects: `{ missing: K }` for keys missing from
///   the underlying index, and `{ key: K, value: V }` for key-value pairs, existence of
///   which is asserted by the proof.
///
/// ```
/// # use serde_json::{self, json};
/// # use exonum_merkledb::{
/// #    access::CopyAccessExt, Database, TemporaryDB, BinaryValue, MapProof, HashTag,
/// #    proof_map::{Hashed, ToProofPath},
/// # };
/// # use exonum_crypto::hash;
/// let fork = { let db = TemporaryDB::new(); db.fork() };
/// let mut map = fork.get_proof_map("index");
/// let (h1, h2) = (HashTag::hash_leaf(&[1]), HashTag::hash_leaf(&[2]));
/// map.put(&h1, 100_u32);
/// map.put(&h2, 200_u32);
///
/// let proof = map.get_proof(h2);
/// assert_eq!(
///     serde_json::to_value(&proof).unwrap(),
///     json!({
///         "proof": [{
///             "path": Hashed::transform_key(&h1),
///             "hash": HashTag::hash_leaf(&100_u32.to_bytes()),
///         }],
///         "entries": [{ "key": h2, "value": 200 }],
///     })
/// );
/// ```
///
/// ## Note on external implementations
///
/// External implementations (e.g., in light clients) must treat serialized `MapProof`s
/// as untrusted inputs. Implementations may rely on the invariants provided by Exonum nodes
/// (e.g., ordering of `proof`; see [`check()`]) only if these invariants are checked
/// during proof verification.
///
/// [`get_proof()`]: struct.ProofMapIndex.html#method.get_proof
/// [`get_multiproof()`]: struct.ProofMapIndex.html#method.get_multiproof
/// [`check()`]: #method.check
/// [`ProofPath`]: struct.ProofPath.html
#[derive(Clone, Debug, Serialize, Deserialize, PartialEq)]
pub struct MapProof<K, V, KeyMode = Hashed> {
    entries: Vec<OptionalEntry<K, V>>,
    proof: Vec<MapProofEntry>,
    #[serde(skip)]
    _key_mode: PhantomData<KeyMode>,
}

/// Version of `MapProof` obtained after verification.
///
/// See [`MapProof`] for an example of usage.
///
/// [`MapProof`]: struct.MapProof.html#workflow
#[derive(Debug, Serialize)]
pub struct CheckedMapProof<'a, K, V> {
    entries: &'a [OptionalEntry<K, V>],
    hash: Hash,
}

/// Computes the root hash of the Merkle Patricia tree backing the specified entries
/// in the map view.
///
/// The tree is not restored in full; instead, we add the paths to
/// the tree in their lexicographic order (i.e., according to the `PartialOrd` implementation
/// of `ProofPath`) and keep track of the rightmost nodes (the right contour) of the tree.
/// It is easy to see that adding paths in the lexicographic order means that only
/// the nodes in the right contour may be updated on each step. Further, on each step
/// zero or more nodes are evicted from the contour, and a single new node is
/// added to it.
///
/// `entries` are assumed to be sorted by the path in increasing order.
fn collect(entries: &[Cow<'_, MapProofEntry>]) -> Result<Hash, MapProofError> {
    fn common_prefix(x: &ProofPath, y: &ProofPath) -> ProofPath {
        x.prefix(x.common_prefix_len(y))
    }

    fn hash_branch(left_child: &MapProofEntry, right_child: &MapProofEntry) -> Hash {
        let mut branch = BranchNode::empty();
        branch.set_child(ChildKind::Left, &left_child.path, &left_child.hash);
        branch.set_child(ChildKind::Right, &right_child.path, &right_child.hash);
        branch.object_hash()
    }

    /// Folds two last entries in a contour and replaces them with the folded entry.
    ///
    /// Returns an updated common prefix between two last entries in the contour.
    fn fold(contour: &mut Vec<MapProofEntry>, last_prefix: ProofPath) -> Option<ProofPath> {
        let last_entry = contour.pop().unwrap();
        let penultimate_entry = contour.pop().unwrap();

        contour.push(MapProofEntry {
            path: last_prefix,
            hash: hash_branch(&penultimate_entry, &last_entry),
        });

        if contour.len() > 1 {
            let penultimate_entry = contour[contour.len() - 2];
            Some(common_prefix(&penultimate_entry.path, &last_prefix))
        } else {
            None
        }
    }

    match entries.len() {
        0 => Ok(Hash::default()),

        1 => {
            if entries[0].path.is_leaf() {
                Ok(HashTag::hash_single_entry_map(
                    &entries[0].path,
                    &entries[0].hash,
                ))
            } else {
                Err(MapProofError::NonTerminalNode(entries[0].path))
            }
        }

        _ => {
            let (first_entry, second_entry) = (&entries[0], &entries[1]);
            let mut contour: Vec<MapProofEntry> = vec![**first_entry, **second_entry];
            // invariant: equal to the common prefix of the 2 last nodes in the contour
            let mut last_prefix = common_prefix(&first_entry.path, &second_entry.path);

            for entry in entries.iter().skip(2) {
                let new_prefix = common_prefix(&contour.last().unwrap().path, &entry.path);
                let new_prefix_len = new_prefix.len();

                while contour.len() > 1 && new_prefix_len < last_prefix.len() {
                    if let Some(prefix) = fold(&mut contour, last_prefix) {
                        last_prefix = prefix;
                    }
                }

                contour.push(**entry);
                last_prefix = new_prefix;
            }

            while contour.len() > 1 {
                if let Some(prefix) = fold(&mut contour, last_prefix) {
                    last_prefix = prefix;
                }
            }

            Ok(contour[0].hash)
        }
    }
}

impl<K, V, KeyMode> MapProof<K, V, KeyMode> {
    /// Provides access to the proof part of the view. Useful mainly for debug purposes.
    pub fn proof_unchecked(&self) -> Vec<(ProofPath, Hash)> {
        self.proof
            .iter()
            .cloned()
            .map(|e| (e.path, e.hash))
            .collect()
    }

    /// Retrieves references to keys that the proof shows as missing from the map.
    /// This method does not perform any integrity checks of the proof.
    pub fn missing_keys_unchecked(&self) -> impl Iterator<Item = &K> {
        self.entries.iter().filter_map(OptionalEntry::as_missing)
    }

    /// Retrieves references to existing and non-existing entries in the proof.
    ///
    /// Existing entries have `Some` value, non-existing have `None`.
    /// This method does not perform any integrity checks of the proof.
    pub fn all_entries_unchecked(&self) -> impl Iterator<Item = (&K, Option<&V>)> {
        self.entries.iter().map(|e| match e {
            OptionalEntry::Missing { ref missing } => (missing, None),
            OptionalEntry::KV { ref key, ref value } => (key, Some(value)),
        })
    }

    /// Creates a new builder.
    pub(crate) fn new() -> Self {
        Self {
            entries: vec![],
            proof: vec![],
            _key_mode: PhantomData,
        }
    }

    /// Adds an existing entry into the builder.
    pub(crate) fn add_entry(mut self, key: K, value: V) -> Self {
        self.entries.push(OptionalEntry::value(key, value));
        self
    }

    /// Adds a missing key into the builder.
    pub(crate) fn add_missing(mut self, key: K) -> Self {
        self.entries.push(OptionalEntry::missing(key));
        self
    }

    /// Adds a proof entry into the builder. The `path` must be greater than keys of
    /// all proof entries previously added to the proof.
    pub(crate) fn add_proof_entry(mut self, path: ProofPath, hash: Hash) -> Self {
        debug_assert!(self.proof.last().map_or(true, |last| last.path < path));
        self.proof.push(MapProofEntry { path, hash });
        self
    }

    /// Adds several proof entries into the builder. The `paths` must be greater than keys of
    /// all proof entries previously added to the proof and sorted in increasing order.
    pub(crate) fn add_proof_entries<I>(mut self, paths: I) -> Self
    where
        I: IntoIterator<Item = (ProofPath, Hash)>,
    {
        self.proof.extend(
            paths
                .into_iter()
                .map(|(path, hash)| MapProofEntry { path, hash }),
        );
        debug_assert!(self.proof.windows(2).all(|w| w[0].path < w[1].path));
        self
    }
}

#[allow(clippy::use_self)] // false positives in `map_values`
impl<K, V, KeyMode> MapProof<K, V, KeyMode>
where
    V: BinaryValue,
    KeyMode: ToProofPath<K>,
{
    fn precheck(&self) -> Result<(), MapProofError> {
        use self::MapProofError::*;
        use std::cmp::Ordering;

        // Check that entries in `proof` are in increasing order.
        for w in self.proof.windows(2) {
            let (prev_path, path) = (&w[0].path, &w[1].path);
            match prev_path.partial_cmp(path) {
                Some(Ordering::Less) => {
                    if path.starts_with(prev_path) {
                        return Err(EmbeddedPaths {
                            prefix: *prev_path,
                            path: *path,
                        });
                    }
                }
                Some(Ordering::Equal) => {
                    return Err(DuplicatePath(*path));
                }
                Some(Ordering::Greater) => {
                    return Err(InvalidOrdering(*prev_path, *path));
                }
                None => unreachable!("Incomparable keys in proof"),
            }
        }

        // Check that no entry has a prefix among the paths in the proof entries.
        // In order to do this, it suffices to locate the closest smaller path in the proof entries
        // and check only it.
        for e in &self.entries {
            let path = KeyMode::transform_key(e.key());

            match self.proof.binary_search_by(|pe| {
                pe.path
                    .partial_cmp(&path)
                    .expect("Incomparable paths in proof")
            }) {
                Ok(_) => {
                    return Err(DuplicatePath(path));
                }

                Err(index) if index > 0 => {
                    let prev_path = &self.proof[index - 1].path;
                    if path.starts_with(prev_path) {
                        return Err(EmbeddedPaths {
                            prefix: *prev_path,
                            path,
                        });
                    }
                }

                _ => {}
            }
        }

        Ok(())
    }

    /// Checks this proof.
    ///
    /// ## Errors
    ///
    /// An error is returned if proof is malformed. The following checks are performed:
    ///
    /// - `proof` elements are ordered by increasing `path` field.
    /// - No path in `proof` is a prefix of another path in `proof` or a path inferred from
    ///   an entry.
    /// - Paths in `proof` and ones computed from `entries` are all distinct.
    ///
    /// # Examples
    ///
    /// ```
    /// # use exonum_merkledb::{access::CopyAccessExt, Database, TemporaryDB, ProofMapIndex, ObjectHash};
    /// # use exonum_crypto::hash;
    /// let fork = { let db = TemporaryDB::new(); db.fork() };
    /// let mut map = fork.get_proof_map("index");
    /// let (h1, h2) = (hash(&[1]), hash(&[2]));
    /// map.put(&h1, 100u32);
    /// map.put(&h2, 200u32);
    ///
    /// let proof = map.get_proof(h2);
    /// let checked_proof = proof.check().unwrap();
    /// assert_eq!(checked_proof.entries().collect::<Vec<_>>(), vec![(&h2, &200u32)]);
    /// assert_eq!(checked_proof.index_hash(), map.object_hash());
    /// ```
    ///
    /// [`ProofMapIndex`]: struct.ProofMapIndex.html
    pub fn check(&self) -> Result<CheckedMapProof<'_, K, V>, MapProofError> {
        self.precheck()?;

        let mut proof: Vec<_> = self.proof.iter().map(Cow::Borrowed).collect();
        proof.extend(self.entries.iter().filter_map(|e| {
            e.as_kv().map(|(key, value)| {
                Cow::Owned(MapProofEntry {
                    path: KeyMode::transform_key(key),
                    hash: HashTag::hash_leaf(&value.to_bytes()),
                })
            })
        }));

        // Rust docs state that in the case `self.proof` and `self.entries` are sorted
        // (which is the case for `MapProof`s returned by `ProofMapIndex.get_proof()`),
        // the sort is performed very quickly.
        proof.sort_unstable_by(|x, y| {
            x.path.partial_cmp(&y.path).expect(
                "Incorrectly formed paths supplied to MapProof; \
                 paths should have `start` field set to 0",
            )
        });

        // This check is required as duplicate paths can be introduced by entries
        // (further, it's generally possible that two different entry keys lead to the same
        // `ProofPath`).
        for window in proof.windows(2) {
            if window[0].path == window[1].path {
                return Err(MapProofError::DuplicatePath(window[0].path));
            }
        }

        collect(&proof).map(|merkle_root| CheckedMapProof {
            entries: &self.entries,
            hash: HashTag::hash_map_node(merkle_root),
        })
    }

    /// Checks this proof against a trusted map hash. Fails if the proof is malformed or the
    /// hash does not match the one computed from the proof.
    pub fn check_against_hash(
        &self,
        expected_map_hash: Hash,
    ) -> Result<CheckedMapProof<'_, K, V>, ValidationError<MapProofError>> {
        self.check()
            .map_err(ValidationError::Malformed)
            .and_then(|checked| {
                if checked.index_hash() == expected_map_hash {
                    Ok(checked)
                } else {
                    Err(ValidationError::UnmatchedRootHash)
                }
            })
    }

    /// Maps values in this proof. Note that this transform may render the proof invalid.
    pub fn map_values<U, F>(self, mut map_fn: F) -> MapProof<K, U, KeyMode>
    where
        U: BinaryValue,
        F: FnMut(V) -> U,
    {
        MapProof {
            entries: self
                .entries
                .into_iter()
                .map(|entry| match entry {
                    OptionalEntry::Missing { missing } => OptionalEntry::Missing { missing },
                    OptionalEntry::KV { key, value } => OptionalEntry::KV {
                        key,
                        value: map_fn(value),
                    },
                })
                .collect(),
            proof: self.proof,
            _key_mode: PhantomData,
        }
    }
}

impl<'a, K, V> CheckedMapProof<'a, K, V> {
    /// Retrieves references to keys that the proof shows as missing from the map.
    pub fn missing_keys(&self) -> impl Iterator<Item = &'a K> {
        self.entries.iter().filter_map(OptionalEntry::as_missing)
    }

    /// Retrieves references to key-value pairs that the proof shows as present in the map.
    pub fn entries(&self) -> impl Iterator<Item = (&'a K, &'a V)> {
        self.entries.iter().filter_map(OptionalEntry::as_kv)
    }

    /// Retrieves references to existing and non-existing entries in the proof.
    /// Existing entries have `Some` value, non-existing have `None`.
    pub fn all_entries(&self) -> impl Iterator<Item = (&'a K, Option<&'a V>)> {
        self.entries.iter().map(OptionalEntry::as_tuple)
    }

    /// Returns the `object_hash()` of the underlying `ProofMapIndex`.
    pub fn index_hash(&self) -> Hash {
        self.hash
    }
}