1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
use crate::{definitions::N_UNARYOPS_OF_DEEPEX_ON_STACK, exerr, ExError, ExResult};
use num::Float;
use smallvec::{smallvec, SmallVec};
use std::{fmt::Debug, marker::PhantomData};

enum OperatorType {
    Bin,
    Unary,
}

fn make_op_not_available_error(repr: &str, op_type: OperatorType) -> ExError {
    let op_type_str = match op_type {
        OperatorType::Bin => "binary",
        OperatorType::Unary => "unary",
    };
    exerr!("{} operator '{}' not available", op_type_str, repr)
}

/// Operators can be unary such as `sin`, binary such as `*`, unary and binary such as `-`,
/// or constants such as `π`. To use custom operators, see the short-cut-macro [`ops_factory`](crate::ops_factory)
/// implement the trait [`MakeOperators`](crate::MakeOperators) directly.
#[derive(Clone, Eq, PartialEq, Ord, PartialOrd, Debug)]
pub struct Operator<'a, T: Clone> {
    /// Representation of the operator in the string to be parsed, e.g., `-` or `sin`.
    repr: &'a str,
    /// Binary operator that contains a priority besides a function pointer.
    bin_op: Option<BinOp<T>>,
    /// Unary operator that does not have an explicit priority. Unary operators have
    /// higher priority than binary opertors, e.g., `-1^2 == 1`.
    unary_op: Option<fn(T) -> T>,
    /// An operator can also be constant.
    constant: Option<T>,
}

fn unwrap_operator<'a, O>(
    wrapped_op: &'a Option<O>,
    repr: &str,
    op_type: OperatorType,
) -> ExResult<&'a O> {
    wrapped_op
        .as_ref()
        .ok_or_else(|| make_op_not_available_error(repr, op_type))
}

impl<'a, T: Clone> Operator<'a, T> {
    fn new(
        repr: &'a str,
        bin_op: Option<BinOp<T>>,
        unary_op: Option<fn(T) -> T>,
        constant: Option<T>,
    ) -> Operator<'a, T> {
        if constant.is_some() {
            if bin_op.is_some() {
                panic!("Bug! Operators cannot be constant and binary. Check '{repr}'");
            }
            if unary_op.is_some() {
                panic!("Bug! Operators cannot be constant and unary. Check '{repr}'.");
            }
        }
        Operator {
            repr,
            bin_op,
            unary_op,
            constant,
        }
    }

    /// Creates a binary operator.
    pub fn make_bin(repr: &'a str, bin_op: BinOp<T>) -> Operator<'a, T> {
        Operator::new(repr, Some(bin_op), None, None)
    }
    /// Creates a unary operator.
    pub fn make_unary(repr: &'a str, unary_op: fn(T) -> T) -> Operator<'a, T> {
        Operator::new(repr, None, Some(unary_op), None)
    }
    /// Creates an operator that is either unary or binary based on its positioning in the string to be parsed.
    /// For instance, `-` as defined in [`FloatOpsFactory`](FloatOpsFactory) is unary in `-x` and binary
    /// in `2-x`.
    pub fn make_bin_unary(
        repr: &'a str,
        bin_op: BinOp<T>,
        unary_op: fn(T) -> T,
    ) -> Operator<'a, T> {
        Operator::new(repr, Some(bin_op), Some(unary_op), None)
    }
    /// Creates a constant operator. If an operator is constant it cannot be additionally binary or unary.
    pub fn make_constant(repr: &'a str, constant: T) -> Operator<'a, T> {
        Operator::new(repr, None, None, Some(constant))
    }

    pub fn bin(&self) -> ExResult<BinOp<T>> {
        let op = unwrap_operator(&self.bin_op, self.repr, OperatorType::Bin)?;
        Ok(op.clone())
    }
    pub fn unary(&self) -> ExResult<fn(T) -> T> {
        Ok(*unwrap_operator(
            &self.unary_op,
            self.repr,
            OperatorType::Unary,
        )?)
    }
    pub fn repr(&self) -> &'a str {
        self.repr
    }
    pub fn has_bin(&self) -> bool {
        self.bin_op.is_some()
    }
    pub fn has_unary(&self) -> bool {
        self.unary_op.is_some()
    }
    pub fn constant(&self) -> Option<T> {
        self.constant.clone()
    }
}

/// Binary operations implementIng this can be evaluated with
/// [`eval_core`](crate::expression::eval_core).
pub trait OperateBinary<T> {
    fn apply(&self, x: T, y: T) -> T;
}

pub type VecOfUnaryFuncs<T> = SmallVec<[fn(T) -> T; N_UNARYOPS_OF_DEEPEX_ON_STACK]>;

/// Container of unary operators of one expression
#[derive(Clone, Eq, PartialEq, Ord, PartialOrd, Debug)]
pub struct UnaryOp<T> {
    funcs_to_be_composed: VecOfUnaryFuncs<T>,
}

impl<T> UnaryOp<T>
where
    T: Clone,
{
    /// Applies unary operators one after the other starting with the one with the highest index.
    /// # Arguments
    ///
    /// * `x` - number the unary operators are applied to
    ///
    pub fn apply(&self, x: T) -> T {
        let mut result = x;
        // rev, since the last uop is applied first by convention
        for uo in self.funcs_to_be_composed.iter().rev() {
            result = uo(result);
        }
        result
    }

    /// Composes `self` with another unary operator.
    /// The other unary operator will be applied after self.
    pub fn append_after(&mut self, other: UnaryOp<T>) {
        self.append_after_iter(other.funcs_to_be_composed.into_iter());
    }

    /// Removes the operator that will be applied latest, i.e., the first element of the array.
    pub fn remove_latest(&mut self) {
        self.funcs_to_be_composed.remove(0);
    }

    /// Appends an iterator of unary functions to the beginning of the array of unary functions of `self`.
    /// Accordingly, the newly added unary functions will be applied after all other unary functions in the
    /// list, i.e., as latest.
    pub fn append_after_iter<I>(&mut self, other_iter: I)
    where
        I: Iterator<Item = fn(T) -> T>,
    {
        self.funcs_to_be_composed = other_iter
            .chain(self.funcs_to_be_composed.iter().copied())
            .collect::<SmallVec<_>>();
    }

    pub fn len(&self) -> usize {
        self.funcs_to_be_composed.len()
    }

    pub fn new() -> Self {
        Self {
            funcs_to_be_composed: smallvec![],
        }
    }

    pub fn from_vec(v: VecOfUnaryFuncs<T>) -> Self {
        Self {
            funcs_to_be_composed: v,
        }
    }

    pub fn from_iter<I>(iter: I) -> Self
    where
        I: Iterator<Item = fn(T) -> T>,
    {
        Self {
            funcs_to_be_composed: iter.collect(),
        }
    }

    pub fn funcs_to_be_composed(&self) -> &VecOfUnaryFuncs<T> {
        &self.funcs_to_be_composed
    }

    pub fn clear(&mut self) {
        self.funcs_to_be_composed.clear();
    }
}

impl<T: Clone> Default for UnaryOp<T> {
    fn default() -> Self {
        Self::new()
    }
}

/// A binary operator that consists of a function pointer, a priority, and a commutativity-flag.
#[derive(Clone, Eq, PartialEq, Ord, PartialOrd, Debug)]
pub struct BinOp<T: Clone> {
    /// Implementation of the binary operation, e.g., `|a, b| a * b` for multiplication.
    pub apply: fn(T, T) -> T,
    /// Priority of the binary operation. A binary operation with a
    /// higher number will be executed first. For instance, in a sane world `*`
    /// has a higher priority than `+`. However, in Exmex land you could also define
    /// this differently.
    pub prio: i64,
    /// True if this is a commutative operator such as `*` or `+`, false if not such as `-`, `/`, or `^`.
    /// Commutativity is used to compile sub-expressions of numbers correctly.
    pub is_commutative: bool,
}

impl<T: Clone> OperateBinary<T> for BinOp<T> {
    fn apply(&self, x: T, y: T) -> T {
        (self.apply)(x, y)
    }
}

/// To use custom operators one needs to create a factory that implements this trait.
/// In this way, we make sure that we can deserialize expressions with
/// [`serde`](docs.rs/serde) with the correct operators based on the type.
///
/// # Example
///
/// ```rust
/// use exmex::{BinOp, MakeOperators, Operator};
/// #[derive(Clone, Debug)]
/// struct SomeOpsFactory;
/// impl MakeOperators<f32> for SomeOpsFactory {
///     fn make<'a>() -> Vec<Operator<'a, f32>> {    
///         vec![
///             Operator::make_bin_unary(
///                 "-",
///                 BinOp {
///                     apply: |a, b| a - b,
///                     prio: 0,
///                     is_commutative: false,
///                 },
///                 |a| (-a),
///             ),
///             Operator::make_unary("sin", |a| a.sin())
///         ]
///     }
/// }
/// ```
pub trait MakeOperators<T: Clone>: Clone + Debug {
    /// Function that creates a vector of operators.
    fn make<'a>() -> Vec<Operator<'a, T>>;
}

/// Factory of default operators for floating point values.
///
/// |representation|description|
/// |--------------|-----------|
/// |`^`| power |
/// |`*`| product |
/// |`/`| division |
/// |`+`| addition as binary or identity as unary operator|
/// |`-`| subtraction as binary or inverting the sign as unary operator |
/// |`abs`| absolute value |
/// |`signum`| signum |
/// |`sin`| sine |
/// |`cos`| cosine |
/// |`tan`| tangent |
/// |`asin`| inverse sine |
/// |`acos`| inverse cosine |
/// |`atan`| inverse tangent |
/// |`sinh`| hyperbolic sine |
/// |`cosh`| hyperbolic cosine |
/// |`tanh`| hyperbolic tangent |
/// |`floor`| largest integer less than or equal to a number |
/// |`ceil`| smallest integer greater than or equal to a number |
/// |`trunc`| integer part of a number |
/// |`fract`| fractional part of a number |
/// |`exp`| exponential functionn |
/// |`sqrt`| square root |
/// |`cbrt`| cube root |
/// |`ln`| natural logarithm |
/// |`log2`| logarithm with basis 2 |
/// |`log10`| logarithm with basis 10 |
/// |`log`| natural logarithm |
/// |`PI`| constant π |
/// |`π`| second representation of constant π |
/// |`TAU`| constant τ=2π |
/// |`τ`| second representation of constant τ |
/// |`E`| Euler's number |
/// |`e`| second representation of Euler's number |
///
///
#[derive(Clone, Eq, PartialEq, Ord, PartialOrd, Debug)]
pub struct FloatOpsFactory<T> {
    dummy: PhantomData<T>,
}

impl<T: Debug + Float> MakeOperators<T> for FloatOpsFactory<T> {
    /// Returns the default operators.
    fn make<'a>() -> Vec<Operator<'a, T>> {
        vec![
            Operator::make_bin(
                "^",
                BinOp {
                    apply: |a, b| a.powf(b),
                    prio: 4,
                    is_commutative: false,
                },
            ),
            Operator::make_bin(
                "*",
                BinOp {
                    apply: |a, b| a * b,
                    prio: 2,
                    is_commutative: true,
                },
            ),
            Operator::make_bin(
                "/",
                BinOp {
                    apply: |a, b| a / b,
                    prio: 3,
                    is_commutative: false,
                },
            ),
            Operator::make_bin_unary(
                "+",
                BinOp {
                    apply: |a, b| a + b,
                    prio: 0,
                    is_commutative: true,
                },
                |a| a,
            ),
            Operator::make_bin_unary(
                "-",
                BinOp {
                    apply: |a, b| a - b,
                    prio: 1,
                    is_commutative: false,
                },
                |a| -a,
            ),
            Operator::make_bin(
                "atan2",
                BinOp {
                    apply: |y, x| y.atan2(x),
                    prio: 0,
                    is_commutative: false,
                },
            ),
            Operator::make_unary("abs", |a| a.abs()),
            Operator::make_unary("signum", |a| a.signum()),
            Operator::make_unary("sin", |a| a.sin()),
            Operator::make_unary("cos", |a| a.cos()),
            Operator::make_unary("tan", |a| a.tan()),
            Operator::make_unary("asin", |a| a.asin()),
            Operator::make_unary("acos", |a| a.acos()),
            Operator::make_unary("atan", |a| a.atan()),
            Operator::make_unary("sinh", |a| a.sinh()),
            Operator::make_unary("cosh", |a| a.cosh()),
            Operator::make_unary("tanh", |a| a.tanh()),
            Operator::make_unary("asinh", |a| a.asinh()),
            Operator::make_unary("acosh", |a| a.acosh()),
            Operator::make_unary("atanh", |a| a.atanh()),
            Operator::make_unary("floor", |a| a.floor()),
            Operator::make_unary("round", |a| a.round()),
            Operator::make_unary("ceil", |a| a.ceil()),
            Operator::make_unary("trunc", |a| a.trunc()),
            Operator::make_unary("fract", |a| a.fract()),
            Operator::make_unary("exp", |a| a.exp()),
            Operator::make_unary("sqrt", |a| a.sqrt()),
            Operator::make_unary("cbrt", |a| a.cbrt()),
            Operator::make_unary("ln", |a| a.ln()),
            Operator::make_unary("log2", |a| a.log2()),
            Operator::make_unary("log10", |a| a.log10()),
            Operator::make_unary("log", |a| a.ln()),
            Operator::make_constant("PI", T::from(std::f64::consts::PI).unwrap()),
            Operator::make_constant("π", T::from(std::f64::consts::PI).unwrap()),
            Operator::make_constant("E", T::from(std::f64::consts::E).unwrap()),
            Operator::make_constant("e", T::from(std::f64::consts::E).unwrap()),
            Operator::make_constant("TAU", T::from(std::f64::consts::TAU).unwrap()),
            Operator::make_constant("τ", T::from(std::f64::consts::TAU).unwrap()),
        ]
    }
}

/// This macro creates an operator factory struct that implements the trait
/// [`MakeOperators`](MakeOperators). You have to pass the name of the struct
/// as first, the type of the operands as second, and the [`Operator`](Operator)s as
/// third to n-th argument.
///
/// # Example
///
/// The following snippet creates a struct that can be used as in [`FlatEx<_, MyOpsFactory>`](crate::FlatEx).
/// ```
/// use exmex::{MakeOperators, Operator, ops_factory};
/// ops_factory!(
///     MyOpsFactory,  // name of struct
///     f32,           // data type of operands
///     Operator::make_unary("log", |a| a.ln()),
///     Operator::make_unary("log2", |a| a.log2())
/// );
/// ```
#[macro_export]
macro_rules! ops_factory {
    ($name:ident, $T:ty, $( $ops:expr ),*) => {
        #[derive(Clone, Debug)]
        pub struct $name;
        impl MakeOperators<$T> for $name {
            fn make<'a>() -> Vec<Operator<'a, $T>> {
                vec![$($ops,)*]
            }
        }
    }
}