1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
#![doc(html_root_url = "https://docs.rs/exmex/0.19.0")]
//! Exmex is an extendable mathematical expression parser and evaluator. Ease of use, flexibility, and efficient evaluations are its main design goals.
//! Exmex can parse mathematical expressions possibly containing variables and operators. On the one hand, it comes with a list of default operators
//! for floating point values. For differentiable default operators, Exmex can compute partial derivatives. On the other hand, users can define their
//! own operators and work with different data types such as float, integer, bool, or other types that implement `Clone`, `FromStr`, `Debug`, and Default.
//!
//! The following snippet shows how to evaluate a string.
//! ```rust
//! # use std::error::Error;
//! # fn main() -> Result<(), Box<dyn Error>> {
//! #
//! use exmex;
//! let eval_result = exmex::eval_str::<f64>("1.5 * ((cos(2*π) + 23.0) / 2.0)")?;
//! assert!((eval_result - 18.0).abs() < 1e-12);
//! #
//! #     Ok(())
//! # }
//! ```
//! For floats, we have a list of predefined operators containing
//! `^`, `*`, `/`, `+`, `-`, `sin`, `cos`, `tan`, `exp`, `log10`, `ln`, and `log2`. Further, the constants π, τ,
//! and Euler's number are refered to via `π`/`PI`, `τ/TAU`, and `E`, respectively. The full list is
//! defined in [`FloatOpsFactory`]. Library users can also create their
//! own operators and constants as shown below in the section about extendability.
//!
//! ## Variables
//!
//! To define variables we can use strings that are not in the list of operators as shown in the following expression.
//! Additionally, variables should consist only of letters, greek letters, numbers, and underscores. More precisely, they
//! need to fit the regular expression `r"[a-zA-Zα-ωΑ-Ω_]+[a-zA-Zα-ωΑ-Ω_0-9]*"`, if they are not between curly brackets.
//!
//! Variables' values are passed as slices to [`eval`](Express::eval).
//! ```rust
//! # use std::error::Error;
//! # fn main() -> Result<(), Box<dyn Error>> {
//! #
//! use exmex::prelude::*;
//! let to_be_parsed = "α * ln(z) + 2* (-z^2 + sin(4*y))";
//! let expr = exmex::parse::<f64>(to_be_parsed)?;
//! assert!((expr.eval(&[3.7, 2.5, 1.0])? - 14.992794866624788 as f64).abs() < 1e-12);
//! #
//! #     Ok(())
//! # }
//! ```
//! The `n`-th number in the slice corresponds to the `n`-th variable. Thereby, the
//! alphabetical order of the variables is relevant. More precisely, the order is defined by the way how Rust sorts strings.
//! In the example above we have `y=3.7`, `z=2.5`, and `α=1`. Note that `α` is the Greek letter Alpha.
//! If variables are between curly brackets, they can have arbitrary names, e.g.,
//! `{456/549*(}`, `{x}`, and also `{👍+👎}` are valid variable names as shown in the following.
//! ```rust
//! # use std::error::Error;
//! # fn main() -> Result<(), Box<dyn Error>> {
//! #
//! use exmex::prelude::*;
//! let x = 2.1f64;
//! let y = 0.1f64;
//! let to_be_parsed = "ln({👍+👎})";  // {👍+👎} is the name of one variable 😕.
//! let expr = exmex::parse::<f64>(to_be_parsed)?;
//! assert!((expr.eval(&[x+y])? - 2.2f64.ln()).abs() < 1e-12);
//! #
//! #     Ok(())
//! # }
//! ```
//! The value returned by [`parse`] is an instance of the struct [`FlatEx`(
//! that implements the [`Express`] trait. Moreover, [`FlatEx`],
//! [`Express`], and [`Calculate`] are the items made accessible by the
//! wildcard import from [`prelude`] if the feature `partial` is not used.
//!
//! ## Features
//! Exmex comes with three features that can be activated in the `Cargo.toml` via
//! ```text
//! [dependencies]
//! exmex = { ..., features = ["partial", "serde", "value"] }
//! ```
//!
//! `partial` allows the computation of partal derivatives, `serde` enables serialization and
//! deserialization, and `value` makes a more general value type accessible.
//!
//! ### Partial Derivatives
//!
//! Expressions with floating point data types can be transformed into their
//! partial derivatives again represented by expressions after activating the feature `partial`.
//! See the [readme](https://github.com/bertiqwerty/exmex#partial-differentiation) for examples.
//!
//! ### Serialization and Deserialization
//!
//! To use [`serde`](https://serde.rs/) you can activate the feature `serde`.
//! The implementation un-parses and re-parses the whole expression.
//! [`Deserialize`](https://docs.serde.rs/serde/de/trait.Deserialize.html) and
//! [`Serialize`](https://docs.serde.rs/serde/de/trait.Serialize.html) are implemented for
//! [`FlatEx`].
//!
//! ### A more General Value Type
//!
//! To use different data types within an expression, one can activate the feature `value` and
//! use the more general type `Val`. The additional flexibility comes with higher parsing
//! and evaluation run times, see the [benchmarks](https://github.com/bertiqwerty/exmex#benchmarks-v0130).
//!
//! ## Extendability
//!
//! How to use custom operators as well as custom data types of the operands even with
//! non-numeric literals is described in the following sub-sections.
//!
//! ### Custom Operators and Constants
//!
//! Operators are instances of the struct
//! [`Operator`]. Constants are defined in terms of constant operators. More precisely,
//! operators can be
//! * binary such as `*`,
//! * unary such as `sin`,
//! * binary as well as unary such as `-`, or
//! * constant such as `PI`.
//!
//! An operator's representation can be accessed via the method
//! [`repr`](Operator::repr). A token of the string-to-be-parsed is identified as operator if it matches the operator's
//! representation exactly. For instance, `PI` will be parsed as the constant π while `PI5` will be parsed as a variable with name `PI5`.
//! When an operator's representation is used in a string-to-be-parsed, the following applies:
//! * Binary operators are positioned between their operands, e.g., `4 ^ 5`.
//! * Unary operators are positioned in front of their operands, e.g., `-1` or `sin(4)`. Note that `sin4`
//! is parsed as variable name, but  `sin 4` is equivalent to `sin(4)`.
//! * Constant operators are handled as if they were numbers and are replaced by their numeric values during parsing.
//! They can be used as in `sin(PI)` or `4 + E`. Note that the calling notation of constant operators such as `PI()` is invalid.
//!
//! All binary operators can be used either like `a op b` or like `op(a, b)`. Thereby, the latter will be interpreted as `((a) op (b))`. For instance
//! `atan2(y * 2, 1 / x) * 2` and `((y * 2) atan2 (1 / x)) * 2` are equivalent. We do not support `n`-ary operators like `f(a, b, c)` for `n = 3`.
//! 
//! Binary, unary, and constant operators can be created with the functions [`make_bin`](Operator::make_bin), [`make_unary`](Operator::make_unary),
//! and [`make_constant`](Operator::make_constant), respectively.
//! Operators need to be created by factories to make serialization via [`serde`](https://serde.rs/) possible as
//! shown in the following.
//! 
//! ```rust
//! # use std::error::Error;
//! # fn main() -> Result<(), Box<dyn Error>> {
//! #
//! use exmex::prelude::*;
//! use exmex::{BinOp, MakeOperators, Operator, ops_factory};
//! ops_factory!(
//!     IntegerOpsFactory,  // name of the factory type
//!     i32,                // data type of the operands
//!     Operator::make_bin(
//!         "%",
//!         BinOp{
//!             apply: |a, b| a % b,
//!             prio: 1,
//!             is_commutative: false,
//!         }
//!     ),
//!     Operator::make_bin(
//!         "/",
//!         BinOp{
//!             apply: |a, b| a / b,
//!             prio: 1,
//!             is_commutative: false,
//!         }
//!     ),
//!     Operator::make_constant("TWO", 2)
//! );
//! let to_be_parsed = "19 % 5 / TWO / a";
//! let expr = FlatEx::<_, IntegerOpsFactory>::parse(to_be_parsed)?;
//! assert_eq!(expr.eval(&[1])?, 2);
//! #
//! #     Ok(())
//! # }
//! ```
//!
//! To extend an existing list of operators, the macro [`ops_factory`] is not
//! sufficient. In this case one has to create a factory struct and implement the
//! [`MakeOperators`] trait with a little boilerplate code.
//! ```rust
//! # use std::error::Error;
//! # fn main() -> Result<(), Box<dyn Error>> {
//! #
//! use exmex::prelude::*;
//! use exmex::{FloatOpsFactory, MakeOperators, Operator};
//! #[derive(Clone, Debug)]
//! struct ExtendedOpsFactory;
//! impl MakeOperators<f32> for ExtendedOpsFactory {
//!     fn make<'a>() -> Vec<Operator<'a, f32>> {
//!         let mut ops = FloatOpsFactory::<f32>::make();
//!         ops.push(
//!             Operator::make_unary("invert", |a| 1.0 / a)
//!         );
//!         ops
//!     }
//! }
//! let to_be_parsed = "1 / a + invert(a)";
//! let expr = FlatEx::<_, ExtendedOpsFactory>::parse(to_be_parsed)?;
//! assert!((expr.eval(&[3.0])? - 2.0/3.0).abs() < 1e-12);
//! #
//! #     Ok(())
//! # }
//! ```
//! ### Custom Data Types of Numbers
//!
//! You can use any type that implements [`Clone`],
//! [`FromStr`], and [`Debug`]. In case the representation of your data type's literals
//! in the string does not match the number regex `r"^(\.?[0-9]+(\.[0-9]+)?)"`, you have to create a suitable matcher
//! type that implements [`MatchLiteral`]. Given a suitable regex pattern, you can utilize the macro
//! [`literal_matcher_from_pattern`].
//! Here is an example for `bool`.
//! ```rust
//! # use std::error::Error;
//! # fn main() -> Result<(), Box<dyn Error>> {
//! #
//! use exmex::prelude::*;
//! use exmex::{
//!     BinOp, MakeOperators, MatchLiteral, Operator,
//!     literal_matcher_from_pattern, ops_factory
//! };
//! ops_factory!(
//!     BooleanOpsFactory,
//!     bool,
//!     Operator::make_bin(
//!         "&&",
//!         BinOp{
//!             apply: |a, b| a && b,
//!             prio: 1,
//!             is_commutative: true,
//!         }
//!     ),
//!     Operator::make_bin(
//!         "||",
//!         BinOp{
//!             apply: |a, b| a || b,
//!             prio: 1,
//!             is_commutative: true,
//!         }
//!     ),
//!     Operator::make_unary("!", |a| !a)
//! );
//! literal_matcher_from_pattern!(BooleanMatcher, "^(true|false)");
//! let to_be_parsed = "!(true && false) || (!false || (true && false))";
//! type FlatExBool = FlatEx::<bool, BooleanOpsFactory, BooleanMatcher>;
//! let expr = FlatExBool::parse(to_be_parsed)?;
//! assert_eq!(expr.eval(&[])?, true);
//! #
//! #     Ok(())
//! # }
//! ```
//! Two examples of exmex with non-trivial data types are:
//! * Numbers can be operators and operators can operate on operators, see, e.g.,
//! also a blog post on [ninety.de](https://www.ninety.de/log/index.php/en/2021/11/11/parsing-operators-in-rust/).
//! * The value type implemented as part of the feature `value` allows expressions containing integers, floats, and bools.
//! Therewith, Pythonesque expressions of the form `"x if a > b else y"` are possible.
//!
//! ## Priorities and Parentheses
//! In Exmex-land, unary operators always have higher priority than binary operators, e.g.,
//! `-2^2=4` instead of `-2^2=-4`. Moreover, we are not too strict regarding parentheses.
//! For instance
//! ```rust
//! # use std::error::Error;
//! # fn main() -> Result<(), Box<dyn Error>> {
//! #
//! use exmex;
//! assert_eq!(exmex::eval_str::<f64>("---1")?, -1.0);
//! #
//! #     Ok(())
//! # }
//! ```
//! If you want to be on the safe side, we suggest using parentheses.
//!
//! ## Display
//!
//! Expressions can be displayed as string. This
//! [`unparse`](Express::unparse)d string coincides with the original
//! string.
//!
//! ```rust
//! # use std::error::Error;
//! # fn main() -> Result<(), Box<dyn Error>> {
//! #
//! use exmex::prelude::*;
//! let expr = exmex::parse::<f64>("-sin(z)/cos(mother_of_names) + 2^7 + E")?;
//! assert_eq!(format!("{}", expr), "-sin(z)/cos(mother_of_names) + 2^7 + E");
//! #
//! #     Ok(())
//! # }
//! ```
//!
//! ## Calculating with Expression
//!
//! Like partial derivatives, calculations need the nested expression type [`DeepEx`](`DeepEx`) that is
//! slower to evaluate than the flattened expression type [`FlatEx`](`FlatEx`). It is possible to calculate
//! with flat expressions of type [`FlatEx`](`FlatEx`). However, transformations to the
//! nested expression [`DeepEx`](`DeepEx`) happen in the background.
//! ```rust
//! # use std::error::Error;
//! # fn main() -> Result<(), Box<dyn Error>> {
//! use exmex::prelude::*;
//! let expr_1 = FlatEx::<f64>::parse("x")?;
//! let expr_2px = FlatEx::<f64>::parse("2 + x")?;
//! let expr_2p2x = expr_1.operate_binary(expr_2px, "+")?;
//! assert!(expr_2p2x.eval(&[-1.5])? < 1e-12);
//! #
//! #     Ok(())
//! # }
//!```
//!
//! To save transformations, we can start by parsing a deep expression to do multiple calculations
//! and flatten eventually.
//!
//! ```rust
//! # use std::error::Error;
//! # fn main() -> Result<(), Box<dyn Error>> {
//! #
//! use exmex::{DeepEx, prelude::*};
//! let deep_cos_x = DeepEx::<f64>::parse("cos(x)")?;
//! let deep_identity = deep_cos_x.operate_unary("acos")?;
//! let one = DeepEx::one();
//! let deep_identity = deep_identity.operate_binary(one, "*")?;
//! let flat_identity = FlatEx::from_deepex(deep_identity)?;
//! assert!((flat_identity.eval(&[3.0])? - 3.0).abs() < 1e-12);
//! #
//! # Ok(())
//! # }
//! ```
//! Alternatively, it is possible to transform a flat expression to a nested expression
//! with [`FlatEx::to_deepex`](`FlatEx::to_deepex`). Moreover, we have implemented the default
//! operators as wrappers around [`Calculate::operate_unary`] and
//! [`Calculate::operate_binary`], see the following re-write of the snippet
//! above.
//!
//! ```rust
//! # use std::error::Error;
//! # fn main() -> Result<(), Box<dyn Error>> {
//! #
//! use exmex::{DeepEx, prelude::*};
//! let deep_cos_x = DeepEx::<f64>::parse("cos(x)")?;
//! let deep_identity = deep_cos_x.acos()?;
//! let one = DeepEx::one();
//! let deep_identity = (deep_identity * one)?;
//! let flat_identity = FlatEx::from_deepex(deep_identity)?;
//! assert!((flat_identity.eval(&[3.0])? - 3.0).abs() < 1e-12);
//! #
//! # Ok(())
//! # }
//! ```

use std::{fmt::Debug, str::FromStr};

mod definitions;
mod expression;
#[macro_use]
mod operators;
mod data_type;
mod parser;
mod result;
#[doc(hidden)]
pub mod statements;
mod util;

#[cfg(feature = "partial")]
pub use data_type::DiffDataType;

#[doc(hidden)]
#[cfg(feature = "value")]
pub use statements::{line_2_statement_val, StatementsVal};
#[doc(hidden)]
pub use statements::{Statement, Statements};
pub use {
    data_type::{DataType, NeutralElts},
    expression::{
        calculate::Calculate, deep::DeepEx, flat::FlatEx, Express, MatchLiteral, NumberMatcher,
    },
    operators::{BinOp, FloatOpsFactory, MakeOperators, Operator},
    result::{ExError, ExResult},
};

// Re-exported since used in macro literal_matcher_from_pattern
pub use {lazy_static, regex};

#[cfg(feature = "value")]
mod value;
#[cfg(feature = "partial")]
pub use expression::partial::{Differentiate, MissingOpMode};
use num::Float;
#[cfg(feature = "value")]
pub use value::{parse_val, FlatExVal, Val, ValMatcher, ValOpsFactory};

/// Exmex' prelude can be imported via `use exmex::prelude::*;`.
///
/// The prelude contains
/// * expression trait [`Express`],
/// * its implementation [`FlatEx`],
/// * and the partial differentiation of [`FlatEx`], if the feature `partial` is active.
///
pub mod prelude {
    pub use crate::expression::{calculate::Calculate, flat::FlatEx, Express};
    #[cfg(feature = "partial")]
    pub use crate::Differentiate;
    pub use std::str::FromStr;
}

/// Parses a string, evaluates the expression, and returns the resulting number.
///
/// # Errrors
///
/// In case the parsing went wrong, e.g., due to an invalid input string, an
/// [`ExError`] is returned.
///
pub fn eval_str<T: DataType>(text: &str) -> ExResult<T>
where
    T: DataType + Float,
    <T as FromStr>::Err: Debug,
{
    let flatex = FlatEx::<T>::parse_wo_compile(text)?;
    if !flatex.var_names().is_empty() {
        return Err(exerr!("input string contains variables, '{}' ", text));
    }
    flatex.eval(&[])
}

/// Parses a string and returns the expression with default operators that can be evaluated.
///
/// # Errrors
///
/// In case the parsing went wrong, e.g., due to an invalid input string, an
/// [`ExError`] is returned.
///
pub fn parse<T>(text: &str) -> ExResult<FlatEx<T>>
where
    T: DataType + Float,
    <T as FromStr>::Err: Debug,
{
    FlatEx::<T>::parse(text)
}