1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
//! Types that can be cheaply aliased.

use std::ops::{Deref, DerefMut};

/// Types that implement this trait can be cheaply copied by (potentially) aliasing the data they
/// contain. Only the _last_ shallow copy will be dropped -- all others will be silently leaked
/// (with `mem::forget`).
///
/// To implement this trait for your own `Copy` type, write:
///
/// ```rust
/// # use evmap::ShallowCopy;
/// #[derive(Copy, Clone)]
/// struct T;
///
/// impl ShallowCopy for T {
///     unsafe fn shallow_copy(&mut self) -> Self {
///         *self
///     }
/// }
/// ```
///
/// If you have a non-`Copy` type, the value returned by `shallow_copy` should point to the same
/// data as the `&mut self`, and it should be safe to `mem::forget` either of the copies as long as
/// the other is dropped normally afterwards.
pub trait ShallowCopy {
    /// Perform an aliasing copy of this value.
    ///
    /// The use of this method is *only* safe if the values involved are never mutated, and only
    /// one of the copies is dropped; the remaining copies must be forgotten with `mem::forget`.
    unsafe fn shallow_copy(&mut self) -> Self;
}

use std::sync::Arc;
impl<T> ShallowCopy for Arc<T>
where
    T: ?Sized,
{
    unsafe fn shallow_copy(&mut self) -> Self {
        Arc::from_raw(&**self as *const _)
    }
}

use std::rc::Rc;
impl<T> ShallowCopy for Rc<T>
where
    T: ?Sized,
{
    unsafe fn shallow_copy(&mut self) -> Self {
        Rc::from_raw(&**self as *const _)
    }
}

impl<T> ShallowCopy for Box<T>
where
    T: ?Sized,
{
    unsafe fn shallow_copy(&mut self) -> Self {
        Box::from_raw(&mut **self as *mut _)
    }
}

impl ShallowCopy for String {
    unsafe fn shallow_copy(&mut self) -> Self {
        let buf = self.as_bytes_mut().as_mut_ptr();
        let len = self.len();
        let cap = self.capacity();
        String::from_raw_parts(buf, len, cap)
    }
}

impl<T> ShallowCopy for Vec<T> {
    unsafe fn shallow_copy(&mut self) -> Self {
        let ptr = self.as_mut_ptr();
        let len = self.len();
        let cap = self.capacity();
        Vec::from_raw_parts(ptr, len, cap)
    }
}

#[cfg(feature = "bytes")]
impl ShallowCopy for bytes::Bytes {
    unsafe fn shallow_copy(&mut self) -> Self {
        let len = self.len();
        let buf: &'static [u8] = std::slice::from_raw_parts(self.as_ptr(), len);
        bytes::Bytes::from_static(buf)
    }
}

impl<'a, T> ShallowCopy for &'a T
where
    T: ?Sized,
{
    unsafe fn shallow_copy(&mut self) -> Self {
        &*self
    }
}

/// If you are willing to have your values be copied between the two views of the `evmap`,
/// wrap them in this type.
///
/// This is effectively a way to bypass the `ShallowCopy` optimization.
/// Note that you do not need this wrapper for most `Copy` primitives.
#[derive(Clone, Copy, Debug, Hash, Eq, PartialEq, Ord, PartialOrd)]
pub struct CopyValue<T>(T);

impl<T: Copy> From<T> for CopyValue<T> {
    fn from(t: T) -> Self {
        CopyValue(t)
    }
}

impl<T> ShallowCopy for CopyValue<T>
where
    T: Copy,
{
    unsafe fn shallow_copy(&mut self) -> Self {
        CopyValue(self.0)
    }
}

impl<T> Deref for CopyValue<T> {
    type Target = T;
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl<T> DerefMut for CopyValue<T> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.0
    }
}

macro_rules! impl_shallow_copy_for_copy_primitives {
    ($($t:ty)*) => ($(
        impl ShallowCopy for $t {
            unsafe fn shallow_copy(&mut self) -> Self {
                *self
            }
        }
    )*)
}

impl_shallow_copy_for_copy_primitives!(() bool char usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64);

macro_rules! tuple_impls {
    ($(
        $Tuple:ident {
            $(($idx:tt) -> $T:ident)+
        }
    )+) => {
        $(
            impl<$($T:ShallowCopy),+> ShallowCopy for ($($T,)+) {
                unsafe fn shallow_copy(&mut self) -> Self {
                    ($(self.$idx.shallow_copy(),)+)
                }
            }
        )+
    }
}

tuple_impls! {
    Tuple1 {
        (0) -> A
    }
    Tuple2 {
        (0) -> A
        (1) -> B
    }
    Tuple3 {
        (0) -> A
        (1) -> B
        (2) -> C
    }
    Tuple4 {
        (0) -> A
        (1) -> B
        (2) -> C
        (3) -> D
    }
    Tuple5 {
        (0) -> A
        (1) -> B
        (2) -> C
        (3) -> D
        (4) -> E
    }
    Tuple6 {
        (0) -> A
        (1) -> B
        (2) -> C
        (3) -> D
        (4) -> E
        (5) -> F
    }
    Tuple7 {
        (0) -> A
        (1) -> B
        (2) -> C
        (3) -> D
        (4) -> E
        (5) -> F
        (6) -> G
    }
    Tuple8 {
        (0) -> A
        (1) -> B
        (2) -> C
        (3) -> D
        (4) -> E
        (5) -> F
        (6) -> G
        (7) -> H
    }
    Tuple9 {
        (0) -> A
        (1) -> B
        (2) -> C
        (3) -> D
        (4) -> E
        (5) -> F
        (6) -> G
        (7) -> H
        (8) -> I
    }
    Tuple10 {
        (0) -> A
        (1) -> B
        (2) -> C
        (3) -> D
        (4) -> E
        (5) -> F
        (6) -> G
        (7) -> H
        (8) -> I
        (9) -> J
    }
    Tuple11 {
        (0) -> A
        (1) -> B
        (2) -> C
        (3) -> D
        (4) -> E
        (5) -> F
        (6) -> G
        (7) -> H
        (8) -> I
        (9) -> J
        (10) -> K
    }
    Tuple12 {
        (0) -> A
        (1) -> B
        (2) -> C
        (3) -> D
        (4) -> E
        (5) -> F
        (6) -> G
        (7) -> H
        (8) -> I
        (9) -> J
        (10) -> K
        (11) -> L
    }
}