1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
use super::{Operation, Predicate, ShallowCopy};
use crate::inner::Inner;
use crate::read::ReadHandle;
use crate::values::Values;

use std::collections::hash_map::RandomState;
use std::hash::{BuildHasher, Hash};
use std::mem::ManuallyDrop;
use std::sync::atomic;
use std::sync::{Arc, MutexGuard};
use std::{fmt, mem, thread};

#[cfg(feature = "indexed")]
use indexmap::map::Entry;
#[cfg(not(feature = "indexed"))]
use std::collections::hash_map::Entry;

/// A handle that may be used to modify the eventually consistent map.
///
/// Note that any changes made to the map will not be made visible to readers until `refresh()` is
/// called.
///
/// When the `WriteHandle` is dropped, the map is immediately (but safely) taken away from all
/// readers, causing all future lookups to return `None`.
///
/// # Examples
/// ```
/// let x = ('x', 42);
///
/// let (r, mut w) = evmap::new();
///
/// // the map is uninitialized, so all lookups should return None
/// assert_eq!(r.get(&x.0).map(|rs| rs.len()), None);
///
/// w.refresh();
///
/// // after the first refresh, it is empty, but ready
/// assert_eq!(r.get(&x.0).map(|rs| rs.len()), None);
///
/// w.insert(x.0, x);
///
/// // it is empty even after an add (we haven't refresh yet)
/// assert_eq!(r.get(&x.0).map(|rs| rs.len()), None);
///
/// w.refresh();
///
/// // but after the swap, the record is there!
/// assert_eq!(r.get(&x.0).map(|rs| rs.len()), Some(1));
/// assert_eq!(r.get(&x.0).map(|rs| rs.iter().any(|v| v.0 == x.0 && v.1 == x.1)), Some(true));
/// ```
pub struct WriteHandle<K, V, M = (), S = RandomState>
where
    K: Eq + Hash + Clone,
    S: BuildHasher + Clone,
    V: Eq + Hash + ShallowCopy,
    M: 'static + Clone,
{
    epochs: crate::Epochs,
    w_handle: Option<Box<Inner<K, ManuallyDrop<V>, M, S>>>,
    oplog: Vec<Operation<K, V>>,
    swap_index: usize,
    r_handle: ReadHandle<K, V, M, S>,
    last_epochs: Vec<usize>,
    meta: M,
    first: bool,
    second: bool,
}

impl<K, V, M, S> fmt::Debug for WriteHandle<K, V, M, S>
where
    K: Eq + Hash + Clone + fmt::Debug,
    S: BuildHasher + Clone,
    V: Eq + Hash + ShallowCopy + fmt::Debug,
    M: 'static + Clone + fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("WriteHandle")
            .field("epochs", &self.epochs)
            .field("w_handle", &self.w_handle)
            .field("oplog", &self.oplog)
            .field("swap_index", &self.swap_index)
            .field("r_handle", &self.r_handle)
            .field("meta", &self.meta)
            .field("first", &self.first)
            .field("second", &self.second)
            .finish()
    }
}

pub(crate) fn new<K, V, M, S>(
    w_handle: Inner<K, ManuallyDrop<V>, M, S>,
    epochs: crate::Epochs,
    r_handle: ReadHandle<K, V, M, S>,
) -> WriteHandle<K, V, M, S>
where
    K: Eq + Hash + Clone,
    S: BuildHasher + Clone,
    V: Eq + Hash + ShallowCopy,
    M: 'static + Clone,
{
    let m = w_handle.meta.clone();
    WriteHandle {
        epochs,
        w_handle: Some(Box::new(w_handle)),
        oplog: Vec::new(),
        swap_index: 0,
        r_handle,
        last_epochs: Vec::new(),
        meta: m,
        first: true,
        second: false,
    }
}

impl<K, V, M, S> Drop for WriteHandle<K, V, M, S>
where
    K: Eq + Hash + Clone,
    S: BuildHasher + Clone,
    V: Eq + Hash + ShallowCopy,
    M: 'static + Clone,
{
    fn drop(&mut self) {
        use std::ptr;

        // first, ensure both maps are up to date
        // (otherwise safely dropping deduplicated rows is a pain)
        if !self.oplog.is_empty() {
            self.refresh();
        }
        if !self.oplog.is_empty() {
            self.refresh();
        }
        assert!(self.oplog.is_empty());

        // next, grab the read handle and set it to NULL
        let r_handle = self
            .r_handle
            .inner
            .swap(ptr::null_mut(), atomic::Ordering::Release);

        // now, wait for all readers to depart
        let epochs = Arc::clone(&self.epochs);
        let mut epochs = epochs.lock().unwrap();
        self.wait(&mut epochs);

        // ensure that the subsequent epoch reads aren't re-ordered to before the swap
        atomic::fence(atomic::Ordering::SeqCst);

        let w_handle = &mut self.w_handle.as_mut().unwrap().data;

        // all readers have now observed the NULL, so we own both handles.
        // all records are duplicated between w_handle and r_handle.
        // since the two maps are exactly equal, we need to make sure that we *don't* call the
        // destructors of any of the values that are in our map, as they'll all be called when the
        // last read handle goes out of scope. to do so, we first clear w_handle, which won't drop
        // any elements since its values are kept as ManuallyDrop:
        w_handle.clear();

        // then we transmute r_handle to remove the ManuallyDrop, and then drop it, which will free
        // all the records. this is safe, since we know that no readers are using this pointer
        // anymore (due to the .wait() following swapping the pointer with NULL).
        drop(unsafe { Box::from_raw(r_handle as *mut Inner<K, V, M, S>) });
    }
}

impl<K, V, M, S> WriteHandle<K, V, M, S>
where
    K: Eq + Hash + Clone,
    S: BuildHasher + Clone,
    V: Eq + Hash + ShallowCopy,
    M: 'static + Clone,
{
    fn wait(&mut self, epochs: &mut MutexGuard<'_, slab::Slab<Arc<atomic::AtomicUsize>>>) {
        let mut iter = 0;
        let mut starti = 0;
        let high_bit = 1usize << (mem::size_of::<usize>() * 8 - 1);
        // we're over-estimating here, but slab doesn't expose its max index
        self.last_epochs.resize(epochs.capacity(), 0);
        'retry: loop {
            // read all and see if all have changed (which is likely)
            for (ii, (ri, epoch)) in epochs.iter().enumerate().skip(starti) {
                // note that `ri` _may_ have been re-used since we last read into last_epochs.
                // this is okay though, as a change still implies that the new reader must have
                // arrived _after_ we did the atomic swap, and thus must also have seen the new
                // pointer.
                if self.last_epochs[ri] & high_bit != 0 {
                    // reader was not active right after last swap
                    // and therefore *must* only see new pointer
                    continue;
                }

                let now = epoch.load(atomic::Ordering::Acquire);
                if (now != self.last_epochs[ri]) | (now & high_bit != 0) | (now == 0) {
                    // reader must have seen last swap
                } else {
                    // reader may not have seen swap
                    // continue from this reader's epoch
                    starti = ii;

                    // how eagerly should we retry?
                    if iter != 20 {
                        iter += 1;
                    } else {
                        thread::yield_now();
                    }

                    continue 'retry;
                }
            }
            break;
        }
    }

    /// Refresh the handle used by readers so that pending writes are made visible.
    ///
    /// This method needs to wait for all readers to move to the new handle so that it can replay
    /// the operational log onto the stale map copy the readers used to use. This can take some
    /// time, especially if readers are executing slow operations, or if there are many of them.
    pub fn refresh(&mut self) -> &mut Self {
        // we need to wait until all epochs have changed since the swaps *or* until a "finished"
        // flag has been observed to be on for two subsequent iterations (there still may be some
        // readers present since we did the previous refresh)
        //
        // NOTE: it is safe for us to hold the lock for the entire duration of the swap. we will
        // only block on pre-existing readers, and they are never waiting to push onto epochs
        // unless they have finished reading.
        let epochs = Arc::clone(&self.epochs);
        let mut epochs = epochs.lock().unwrap();

        self.wait(&mut epochs);

        {
            // all the readers have left!
            // we can safely bring the w_handle up to date.
            let w_handle = self.w_handle.as_mut().unwrap();

            if self.second {
                // before the first refresh, all writes went directly to w_handle. then, at the
                // first refresh, r_handle and w_handle were swapped. thus, the w_handle we
                // have now is empty, *and* none of the writes in r_handle are in the oplog.
                // we therefore have to first clone the entire state of the current r_handle
                // and make that w_handle, and *then* replay the oplog (which holds writes
                // following the first refresh).
                //
                // this may seem unnecessarily complex, but it has the major advantage that it
                // is relatively efficient to do lots of writes to the evmap at startup to
                // populate it, and then refresh().
                let r_handle = unsafe {
                    self.r_handle
                        .inner
                        .load(atomic::Ordering::Relaxed)
                        .as_mut()
                        .unwrap()
                };

                // XXX: it really is too bad that we can't just .clone() the data here and save
                // ourselves a lot of re-hashing, re-bucketization, etc.
                w_handle.data.extend(r_handle.data.iter().map(|(k, vs)| {
                    (
                        k.clone(),
                        Values::from_iter(
                            vs.iter().map(|v| unsafe { (&**v).shallow_copy() }),
                            r_handle.data.hasher(),
                        ),
                    )
                }));
            }

            // safety: we will not swap while we hold this reference
            let r_hasher = unsafe { self.r_handle.hasher() };

            // the w_handle map has not seen any of the writes in the oplog
            // the r_handle map has not seen any of the writes following swap_index
            if self.swap_index != 0 {
                // we can drain out the operations that only the w_handle map needs
                //
                // NOTE: the if above is because drain(0..0) would remove 0
                //
                // NOTE: the distinction between apply_first and apply_second is the reason why our
                // use of shallow_copy is safe. we apply each op in the oplog twice, first with
                // apply_first, and then with apply_second. on apply_first, no destructors are
                // called for removed values (since those values all still exist in the other map),
                // and all new values are shallow copied in (since we need the original for the
                // other map). on apply_second, we call the destructor for anything that's been
                // removed (since those removals have already happened on the other map, and
                // without calling their destructor).
                for op in self.oplog.drain(0..self.swap_index) {
                    // because we are applying second, we _do_ want to perform drops
                    Self::apply_second(unsafe { w_handle.do_drop() }, op, r_hasher);
                }
            }
            // the rest have to be cloned because they'll also be needed by the r_handle map
            for op in self.oplog.iter_mut() {
                Self::apply_first(w_handle, op, r_hasher);
            }
            // the w_handle map is about to become the r_handle, and can ignore the oplog
            self.swap_index = self.oplog.len();
            // ensure meta-information is up to date
            w_handle.meta = self.meta.clone();
            w_handle.mark_ready();

            // w_handle (the old r_handle) is now fully up to date!
        }

        // at this point, we have exclusive access to w_handle, and it is up-to-date with all
        // writes. the stale r_handle is accessed by readers through an Arc clone of atomic pointer
        // inside the ReadHandle. oplog contains all the changes that are in w_handle, but not in
        // r_handle.
        //
        // it's now time for us to swap the maps so that readers see up-to-date results from
        // w_handle.

        // prepare w_handle
        let w_handle = self.w_handle.take().unwrap();
        let w_handle = Box::into_raw(w_handle);

        // swap in our w_handle, and get r_handle in return
        let r_handle = self
            .r_handle
            .inner
            .swap(w_handle, atomic::Ordering::Release);
        let r_handle = unsafe { Box::from_raw(r_handle) };

        // ensure that the subsequent epoch reads aren't re-ordered to before the swap
        atomic::fence(atomic::Ordering::SeqCst);

        for (ri, epoch) in epochs.iter() {
            self.last_epochs[ri] = epoch.load(atomic::Ordering::Acquire);
        }

        // NOTE: at this point, there are likely still readers using the w_handle we got
        self.w_handle = Some(r_handle);
        self.second = self.first;
        self.first = false;

        self
    }

    /// Gives the sequence of operations that have not yet been applied.
    ///
    /// Note that until the *first* call to `refresh`, the sequence of operations is always empty.
    ///
    /// ```
    /// # use evmap::Operation;
    /// let x = ('x', 42);
    ///
    /// let (r, mut w) = evmap::new();
    ///
    /// // before the first refresh, no oplog is kept
    /// w.refresh();
    ///
    /// assert_eq!(w.pending(), &[]);
    /// w.insert(x.0, x);
    /// assert_eq!(w.pending(), &[Operation::Add(x.0, x)]);
    /// w.refresh();
    /// w.remove(x.0, x);
    /// assert_eq!(w.pending(), &[Operation::Remove(x.0, x)]);
    /// w.refresh();
    /// assert_eq!(w.pending(), &[]);
    /// ```
    pub fn pending(&self) -> &[Operation<K, V>] {
        &self.oplog[self.swap_index..]
    }

    /// Refresh as necessary to ensure that all operations are visible to readers.
    ///
    /// `WriteHandle::refresh` will *always* wait for old readers to depart and swap the maps.
    /// This method will only do so if there are pending operations.
    pub fn flush(&mut self) -> &mut Self {
        if !self.pending().is_empty() {
            self.refresh();
        }

        self
    }

    /// Set the metadata.
    ///
    /// Will only be visible to readers after the next call to `refresh()`.
    pub fn set_meta(&mut self, mut meta: M) -> M {
        mem::swap(&mut self.meta, &mut meta);
        meta
    }

    fn add_op(&mut self, op: Operation<K, V>) -> &mut Self {
        if !self.first {
            self.oplog.push(op);
        } else {
            // we know there are no outstanding w_handle readers, so we can modify it directly!
            let w_inner = self.w_handle.as_mut().unwrap();
            let r_hasher = unsafe { self.r_handle.hasher() };
            // because we are applying second, we _do_ want to perform drops
            Self::apply_second(unsafe { w_inner.do_drop() }, op, r_hasher);
            // NOTE: since we didn't record this in the oplog, r_handle *must* clone w_handle
        }

        self
    }

    /// Add the given value to the value-bag of the given key.
    ///
    /// The updated value-bag will only be visible to readers after the next call to `refresh()`.
    pub fn insert(&mut self, k: K, v: V) -> &mut Self {
        self.add_op(Operation::Add(k, v))
    }

    /// Replace the value-bag of the given key with the given value.
    ///
    /// Replacing the value will automatically deallocate any heap storage and place the new value
    /// back into the `SmallVec` inline storage. This can improve cache locality for common
    /// cases where the value-bag is only ever a single element.
    ///
    /// See [the doc section on this](./index.html#small-vector-optimization) for more information.
    ///
    /// The new value will only be visible to readers after the next call to `refresh()`.
    pub fn update(&mut self, k: K, v: V) -> &mut Self {
        self.add_op(Operation::Replace(k, v))
    }

    /// Clear the value-bag of the given key, without removing it.
    ///
    /// If a value-bag already exists, this will clear it but leave the
    /// allocated memory intact for reuse, or if no associated value-bag exists
    /// an empty value-bag will be created for the given key.
    ///
    /// The new value will only be visible to readers after the next call to `refresh()`.
    pub fn clear(&mut self, k: K) -> &mut Self {
        self.add_op(Operation::Clear(k))
    }

    /// Remove the given value from the value-bag of the given key.
    ///
    /// The updated value-bag will only be visible to readers after the next call to `refresh()`.
    pub fn remove(&mut self, k: K, v: V) -> &mut Self {
        self.add_op(Operation::Remove(k, v))
    }

    /// Remove the value-bag for the given key.
    ///
    /// The value-bag will only disappear from readers after the next call to `refresh()`.
    pub fn empty(&mut self, k: K) -> &mut Self {
        self.add_op(Operation::Empty(k))
    }

    /// Purge all value-bags from the map.
    ///
    /// The map will only appear empty to readers after the next call to `refresh()`.
    ///
    /// Note that this will iterate once over all the keys internally.
    pub fn purge(&mut self) -> &mut Self {
        self.add_op(Operation::Purge)
    }

    /// Retain elements for the given key using the provided predicate function.
    ///
    /// The remaining value-bag will only be visible to readers after the next call to `refresh()`
    ///
    /// # Safety
    ///
    /// The given closure is called _twice_ for each element, once when called, and once
    /// on swap. It _must_ retain the same elements each time, otherwise a value may exist in one
    /// map, but not the other, leaving the two maps permanently out-of-sync. This is _really_ bad,
    /// as values are aliased between the maps, and are assumed safe to free when they leave the
    /// map during a `refresh`. Returning `true` when `retain` is first called for a value, and
    /// `false` the second time would free the value, but leave an aliased pointer to it in the
    /// other side of the map.
    ///
    /// The arguments to the predicate function are the current value in the value-bag, and `true`
    /// if this is the first value in the value-bag on the second map, or `false` otherwise. Use
    /// the second argument to know when to reset any closure-local state to ensure deterministic
    /// operation.
    ///
    /// So, stated plainly, the given closure _must_ return the same order of true/false for each
    /// of the two iterations over the value-bag. That is, the sequence of returned booleans before
    /// the second argument is true must be exactly equal to the sequence of returned booleans
    /// at and beyond when the second argument is true.
    pub unsafe fn retain<F>(&mut self, k: K, f: F) -> &mut Self
    where
        F: FnMut(&V, bool) -> bool + 'static + Send,
    {
        self.add_op(Operation::Retain(k, Predicate(Box::new(f))))
    }

    /// Shrinks a value-bag to it's minimum necessary size, freeing memory
    /// and potentially improving cache locality by switching to inline storage.
    ///
    /// The optimized value-bag will only be visible to readers after the next call to `refresh()`
    pub fn fit(&mut self, k: K) -> &mut Self {
        self.add_op(Operation::Fit(Some(k)))
    }

    /// Like [`WriteHandle::fit`](#method.fit), but shrinks <b>all</b> value-bags in the map.
    ///
    /// The optimized value-bags will only be visible to readers after the next call to `refresh()`
    pub fn fit_all(&mut self) -> &mut Self {
        self.add_op(Operation::Fit(None))
    }

    /// Reserves capacity for some number of additional elements in a value-bag,
    /// or creates an empty value-bag for this key with the given capacity if
    /// it doesn't already exist.
    ///
    /// Readers are unaffected by this operation, but it can improve performance
    /// by pre-allocating space for large value-bags.
    pub fn reserve(&mut self, k: K, additional: usize) -> &mut Self {
        self.add_op(Operation::Reserve(k, additional))
    }

    #[cfg(feature = "indexed")]
    /// Remove the value-bag for a key at a specified index.
    ///
    /// This is effectively random removal.
    /// The value-bag will only disappear from readers after the next call to `refresh()`.
    ///
    /// Note that this does a _swap-remove_, so use it carefully.
    pub fn empty_at_index(&mut self, index: usize) -> Option<(&K, &Values<V, S>)> {
        self.add_op(Operation::EmptyRandom(index));
        // the actual emptying won't happen until refresh(), which needs &mut self
        // so it's okay for us to return the references here

        // NOTE to future zealots intent on removing the unsafe code: it's **NOT** okay to use
        // self.w_handle here, since that does not have all pending operations applied to it yet.
        // Specifically, there may be an *eviction* pending that already has been applied to the
        // r_handle side, but not to the w_handle (will be applied on the next swap). We must make
        // sure that we read the most up to date map here.
        let inner = self.r_handle.inner.load(atomic::Ordering::SeqCst);
        unsafe { (*inner).data.get_index(index) }.map(|(k, vs)| (k, vs.user_friendly()))
    }

    /// Apply ops in such a way that no values are dropped, only forgotten
    fn apply_first(
        inner: &mut Inner<K, ManuallyDrop<V>, M, S>,
        op: &mut Operation<K, V>,
        hasher: &S,
    ) {
        match *op {
            Operation::Replace(ref key, ref mut value) => {
                let vs = inner.data.entry(key.clone()).or_insert_with(Values::new);

                // truncate vector
                vs.clear();

                // implicit shrink_to_fit on replace op
                // so it will switch back to inline allocation for the subsequent push.
                vs.shrink_to_fit();

                vs.push(unsafe { value.shallow_copy() }, hasher);
            }
            Operation::Clear(ref key) => {
                inner
                    .data
                    .entry(key.clone())
                    .or_insert_with(Values::new)
                    .clear();
            }
            Operation::Add(ref key, ref mut value) => {
                inner
                    .data
                    .entry(key.clone())
                    .or_insert_with(Values::new)
                    .push(unsafe { value.shallow_copy() }, hasher);
            }
            Operation::Empty(ref key) => {
                #[cfg(not(feature = "indexed"))]
                inner.data.remove(key);
                #[cfg(feature = "indexed")]
                inner.data.swap_remove(key);
            }
            Operation::Purge => {
                inner.data.clear();
            }
            #[cfg(feature = "indexed")]
            Operation::EmptyRandom(index) => {
                inner.data.swap_remove_index(index);
            }
            Operation::Remove(ref key, ref value) => {
                if let Some(e) = inner.data.get_mut(key) {
                    // remove a matching value from the value set
                    // safety: this is fine
                    e.swap_remove(unsafe { &*(value as *const _ as *const ManuallyDrop<V>) });
                }
            }
            Operation::Retain(ref key, ref mut predicate) => {
                if let Some(e) = inner.data.get_mut(key) {
                    let mut first = true;
                    e.retain(move |v| {
                        let retain = predicate.eval(v, first);
                        first = false;
                        retain
                    });
                }
            }
            Operation::Fit(ref key) => match key {
                Some(ref key) => {
                    if let Some(e) = inner.data.get_mut(key) {
                        e.shrink_to_fit();
                    }
                }
                None => {
                    for value_set in inner.data.values_mut() {
                        value_set.shrink_to_fit();
                    }
                }
            },
            Operation::Reserve(ref key, additional) => match inner.data.entry(key.clone()) {
                Entry::Occupied(mut entry) => {
                    entry.get_mut().reserve(additional, hasher);
                }
                Entry::Vacant(entry) => {
                    entry.insert(Values::with_capacity_and_hasher(additional, hasher));
                }
            },
        }
    }

    /// Apply operations while allowing dropping of values
    fn apply_second(inner: &mut Inner<K, V, M, S>, op: Operation<K, V>, hasher: &S) {
        match op {
            Operation::Replace(key, value) => {
                let v = inner.data.entry(key).or_insert_with(Values::new);

                // we are going second, so we should drop!
                v.clear();

                v.shrink_to_fit();

                v.push(value, hasher);
            }
            Operation::Clear(key) => {
                inner.data.entry(key).or_insert_with(Values::new).clear();
            }
            Operation::Add(key, value) => {
                inner
                    .data
                    .entry(key)
                    .or_insert_with(Values::new)
                    .push(value, hasher);
            }
            Operation::Empty(key) => {
                #[cfg(not(feature = "indexed"))]
                inner.data.remove(&key);
                #[cfg(feature = "indexed")]
                inner.data.swap_remove(&key);
            }
            Operation::Purge => {
                inner.data.clear();
            }
            #[cfg(feature = "indexed")]
            Operation::EmptyRandom(index) => {
                inner.data.swap_remove_index(index);
            }
            Operation::Remove(key, value) => {
                if let Some(e) = inner.data.get_mut(&key) {
                    // find the first entry that matches all fields
                    e.swap_remove(&value);
                }
            }
            Operation::Retain(key, mut predicate) => {
                if let Some(e) = inner.data.get_mut(&key) {
                    let mut first = true;
                    e.retain(move |v| {
                        let retain = predicate.eval(v, first);
                        first = false;
                        retain
                    });
                }
            }
            Operation::Fit(key) => match key {
                Some(ref key) => {
                    if let Some(e) = inner.data.get_mut(key) {
                        e.shrink_to_fit();
                    }
                }
                None => {
                    for value_set in inner.data.values_mut() {
                        value_set.shrink_to_fit();
                    }
                }
            },
            Operation::Reserve(key, additional) => match inner.data.entry(key) {
                Entry::Occupied(mut entry) => {
                    entry.get_mut().reserve(additional, hasher);
                }
                Entry::Vacant(entry) => {
                    entry.insert(Values::with_capacity_and_hasher(additional, hasher));
                }
            },
        }
    }
}

impl<K, V, M, S> Extend<(K, V)> for WriteHandle<K, V, M, S>
where
    K: Eq + Hash + Clone,
    S: BuildHasher + Clone,
    V: Eq + Hash + ShallowCopy,
    M: 'static + Clone,
{
    fn extend<I: IntoIterator<Item = (K, V)>>(&mut self, iter: I) {
        for (k, v) in iter {
            self.insert(k, v);
        }
    }
}

// allow using write handle for reads
use std::ops::Deref;
impl<K, V, M, S> Deref for WriteHandle<K, V, M, S>
where
    K: Eq + Hash + Clone,
    S: BuildHasher + Clone,
    V: Eq + Hash + ShallowCopy,
    M: 'static + Clone,
{
    type Target = ReadHandle<K, V, M, S>;
    fn deref(&self) -> &Self::Target {
        &self.r_handle
    }
}