1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
use super::Operation;
use inner::Inner;
use read::ReadHandle;

use std::sync::Arc;
use std::sync::atomic;
use std::hash::{BuildHasher, Hash};
use std::collections::hash_map::RandomState;

/// A handle that may be used to modify the eventually consistent map.
///
/// Note that any changes made to the map will not be made visible to readers until `refresh()` is
/// called.
///
/// # Examples
/// ```
/// let x = ('x', 42);
///
/// let (r, mut w) = evmap::new();
///
/// // the map is uninitialized, so all lookups should return None
/// assert_eq!(r.get_and(&x.0, |rs| rs.len()), None);
///
/// w.refresh();
///
/// // after the first refresh, it is empty, but ready
/// assert_eq!(r.get_and(&x.0, |rs| rs.len()), None);
///
/// w.insert(x.0, x);
///
/// // it is empty even after an add (we haven't refresh yet)
/// assert_eq!(r.get_and(&x.0, |rs| rs.len()), None);
///
/// w.refresh();
///
/// // but after the swap, the record is there!
/// assert_eq!(r.get_and(&x.0, |rs| rs.len()), Some(1));
/// assert_eq!(r.get_and(&x.0, |rs| rs.iter().any(|v| v.0 == x.0 && v.1 == x.1)), Some(true));
/// ```
pub struct WriteHandle<K, V, M = (), S = RandomState>
where
    K: Eq + Hash,
    S: BuildHasher,
{
    w_handle: Option<Box<Inner<K, V, M, S>>>,
    oplog: Vec<Operation<K, V>>,
    swap_index: usize,
    r_handle: ReadHandle<K, V, M, S>,
    last_epochs: Vec<usize>,
    meta: M,
    first: bool,
    second: bool,
}

pub fn new<K, V, M, S>(
    w_handle: Inner<K, V, M, S>,
    r_handle: ReadHandle<K, V, M, S>,
) -> WriteHandle<K, V, M, S>
where
    K: Eq + Hash,
    S: BuildHasher,
    M: 'static + Clone,
{
    let m = w_handle.meta.clone();
    WriteHandle {
        w_handle: Some(Box::new(w_handle)),
        oplog: Vec::new(),
        swap_index: 0,
        r_handle: r_handle,
        last_epochs: Vec::new(),
        meta: m,
        first: true,
        second: false,
    }
}

impl<K, V, M, S> WriteHandle<K, V, M, S>
where
    K: Eq + Hash + Clone,
    S: BuildHasher + Clone,
    V: Eq + Clone,
    M: 'static + Clone,
{
    /// Refresh the handle used by readers so that pending writes are made visible.
    ///
    /// This method needs to wait for all readers to move to the new handle so that it can replay
    /// the operational log onto the stale map copy the readers used to use. This can take some
    /// time, especially if readers are executing slow operations, or if there are many of them.
    pub fn refresh(&mut self) {
        use std::thread;
        use std::mem;

        // we need to wait until all epochs have changed since the swaps *or* until a "finished"
        // flag has been observed to be on for two subsequent iterations (there still may be some
        // readers present since we did the previous refresh)
        //
        // NOTE: it is safe for us to hold the lock for the entire duration of the swap. we will
        // only block on pre-existing readers, and they are never waiting to push onto epochs
        // unless they have finished reading.
        let epochs = Arc::clone(&self.w_handle.as_ref().unwrap().epochs);
        let epochs = epochs.lock().unwrap();
        self.last_epochs.resize(epochs.len(), 0);

        let mut iter = 0;
        let mut starti = 0;
        let high_bit = 1usize << (mem::size_of::<usize>() * 8 - 1);
        'retry: loop {
            // read all and see if all have changed (which is likely)
            for (i, epoch) in epochs.iter().enumerate().skip(starti) {
                if self.last_epochs[i] & high_bit != 0 {
                    // reader was not active right after last swap
                    // and therefore *must* only see new pointer
                    continue;
                }

                let now = epoch.load(atomic::Ordering::Acquire);
                if (now != self.last_epochs[i]) | (now & high_bit != 0) | (now == 0) {
                    // reader must have seen last swap
                } else {
                    // reader may not have seen swap
                    // continue from this reader's epoch
                    starti = i;

                    // how eagerly should we retry?
                    if iter != 20 {
                        iter += 1;
                    } else {
                        thread::yield_now();
                    }

                    continue 'retry;
                }
            }

            // all the readers have left!
            // we can safely bring the w_handle up to date.
            let w_handle = self.w_handle.as_mut().unwrap();

            if self.second {
                use std::mem;
                // before the first refresh, all writes went directly to w_handle. then, at the
                // first refresh, r_handle and w_handle were swapped. thus, the w_handle we
                // have now is empty, *and* none of the writes in r_handle are in the oplog.
                // we therefore have to first clone the entire state of the current r_handle
                // and make that w_handle, and *then* replay the oplog (which holds writes
                // following the first refresh).
                //
                // this may seem unnecessarily complex, but it has the major advantage that it
                // is relatively efficient to do lots of writes to the evmap at startup to
                // populate it, and then refresh().
                let r_handle =
                    unsafe { Box::from_raw(self.r_handle.inner.load(atomic::Ordering::Relaxed)) };
                w_handle.data = r_handle.data.clone();
                mem::forget(r_handle);
            }

            // the w_handle map has not seen any of the writes in the oplog
            // the r_handle map has not seen any of the writes following swap_index
            if self.swap_index != 0 {
                // we can drain out the operations that only the w_handle map needs
                // NOTE: the if above is because drain(0..0) would remove 0
                for op in self.oplog.drain(0..self.swap_index) {
                    Self::apply_op(w_handle, op);
                }
            }
            // the rest have to be cloned because they'll also be needed by the r_handle map
            for op in self.oplog.iter().cloned() {
                Self::apply_op(w_handle, op);
            }
            // the w_handle map is about to become the r_handle, and can ignore the oplog
            self.swap_index = self.oplog.len();
            // ensure meta-information is up to date
            w_handle.meta = self.meta.clone();
            w_handle.mark_ready();

            // w_handle (the old r_handle) is now fully up to date!
            break;
        }

        // at this point, we have exclusive access to w_handle, and it is up-to-date with all
        // writes. the stale r_handle is accessed by readers through an Arc clone of atomic pointer
        // inside the ReadHandle. oplog contains all the changes that are in w_handle, but not in
        // r_handle.
        //
        // it's now time for us to swap the maps so that readers see up-to-date results from
        // w_handle.

        // prepare w_handle
        let w_handle = self.w_handle.take().unwrap();
        let w_handle = Box::into_raw(w_handle);

        // swap in our w_handle, and get r_handle in return
        let r_handle = self.r_handle
            .inner
            .swap(w_handle, atomic::Ordering::Release);
        let r_handle = unsafe { Box::from_raw(r_handle) };

        // ensure that the subsequent epoch reads aren't re-ordered to before the swap
        atomic::fence(atomic::Ordering::SeqCst);

        for (i, epoch) in epochs.iter().enumerate() {
            self.last_epochs[i] = epoch.load(atomic::Ordering::Acquire);
        }

        // NOTE: at this point, there are likely still readers using the w_handle we got
        self.w_handle = Some(r_handle);
        self.second = self.first;
        self.first = false;
    }

    /// Set the metadata.
    ///
    /// Will only be visible to readers after the next call to `refresh()`.
    pub fn set_meta(&mut self, mut meta: M) -> M {
        use std::mem;
        mem::swap(&mut self.meta, &mut meta);
        meta
    }

    fn add_op(&mut self, op: Operation<K, V>) {
        if !self.first {
            self.oplog.push(op);
        } else {
            // we know there are no outstanding w_handle readers, so we can modify it directly!
            let inner = self.w_handle.as_mut().unwrap();
            Self::apply_op(inner, op);
            // NOTE: since we didn't record this in the oplog, r_handle *must* clone w_handle
        }
    }

    /// Add the given value to the value-set of the given key.
    ///
    /// The updated value-set will only be visible to readers after the next call to `refresh()`.
    pub fn insert(&mut self, k: K, v: V) {
        self.add_op(Operation::Add(k, v));
    }

    /// Replace the value-set of the given key with the given value.
    ///
    /// The new value will only be visible to readers after the next call to `refresh()`.
    pub fn update(&mut self, k: K, v: V) {
        self.add_op(Operation::Replace(k, v));
    }

    /// Clear the value-set of the given key, without removing it.
    ///
    /// The new value will only be visible to readers after the next call to `refresh()`.
    pub fn clear(&mut self, k: K) {
        self.add_op(Operation::Clear(k));
    }

    /// Remove the given value from the value-set of the given key.
    ///
    /// The updated value-set will only be visible to readers after the next call to `refresh()`.
    pub fn remove(&mut self, k: K, v: V) {
        self.add_op(Operation::Remove(k, v));
    }

    /// Remove the value-set for the given key.
    ///
    /// The value-set will only disappear from readers after the next call to `refresh()`.
    pub fn empty(&mut self, k: K) {
        self.add_op(Operation::Empty(k));
    }

    fn apply_op(inner: &mut Inner<K, V, M, S>, op: Operation<K, V>) {
        match op {
            Operation::Replace(key, value) => {
                let v = inner.data.entry(key).or_insert_with(Vec::new);
                v.clear();
                v.push(value);
            }
            Operation::Clear(key) => {
                let v = inner.data.entry(key).or_insert_with(Vec::new);
                v.clear();
            }
            Operation::Add(key, value) => {
                inner.data.entry(key).or_insert_with(Vec::new).push(value);
            }
            Operation::Empty(key) => {
                inner.data.remove(&key);
            }
            Operation::Remove(key, value) => {
                if let Some(e) = inner.data.get_mut(&key) {
                    // find the first entry that matches all fields
                    if let Some(i) = e.iter().position(|v| v == &value) {
                        e.swap_remove(i);
                    }
                }
            }
        }
    }
}

impl<K, V, M, S> Extend<(K, V)> for WriteHandle<K, V, M, S>
where
    K: Eq + Hash + Clone,
    S: BuildHasher + Clone,
    V: Eq + Clone,
    M: 'static + Clone,
{
    fn extend<I: IntoIterator<Item = (K, V)>>(&mut self, iter: I) {
        for (k, v) in iter {
            self.insert(k, v);
        }
    }
}

// allow using write handle for reads
use std::ops::Deref;
impl<K, V, M, S> Deref for WriteHandle<K, V, M, S>
where
    K: Eq + Hash + Clone,
    S: BuildHasher + Clone,
    V: Eq + Clone,
    M: 'static + Clone,
{
    type Target = ReadHandle<K, V, M, S>;
    fn deref(&self) -> &Self::Target {
        &self.r_handle
    }
}