1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
// Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

use vmm_sys_util::epoll::EpollEvent;
#[cfg(feature = "remote_endpoint")]
use vmm_sys_util::epoll::{ControlOperation, EventSet};

#[cfg(feature = "remote_endpoint")]
use super::endpoint::{EventManagerChannel, RemoteEndpoint};
use super::epoll::EpollWrapper;
use super::subscribers::Subscribers;
#[cfg(feature = "remote_endpoint")]
use super::Errno;
use super::{Error, EventOps, Events, MutEventSubscriber, Result, SubscriberId, SubscriberOps};

/// Allows event subscribers to be registered, connected to the event loop, and later removed.
pub struct EventManager<T> {
    subscribers: Subscribers<T>,
    epoll_context: EpollWrapper,

    #[cfg(feature = "remote_endpoint")]
    channel: EventManagerChannel<T>,
}

impl<T: MutEventSubscriber> SubscriberOps for EventManager<T> {
    type Subscriber = T;

    /// Register a subscriber with the event event_manager and returns the associated ID.
    fn add_subscriber(&mut self, subscriber: T) -> SubscriberId {
        let subscriber_id = self.subscribers.add(subscriber);
        self.subscribers
            .get_mut_unchecked(subscriber_id)
            // The index is valid because we've just added the subscriber.
            .init(&mut self.epoll_context.ops_unchecked(subscriber_id));
        subscriber_id
    }

    /// Unregisters and returns the subscriber associated with the provided ID.
    fn remove_subscriber(&mut self, subscriber_id: SubscriberId) -> Result<T> {
        let subscriber = self
            .subscribers
            .remove(subscriber_id)
            .ok_or(Error::InvalidId)?;
        self.epoll_context.remove(subscriber_id);
        Ok(subscriber)
    }

    /// Return a mutable reference to the subscriber associated with the provided id.
    fn subscriber_mut(&mut self, subscriber_id: SubscriberId) -> Result<&mut T> {
        if self.subscribers.contains(subscriber_id) {
            return Ok(self.subscribers.get_mut_unchecked(subscriber_id));
        }
        Err(Error::InvalidId)
    }

    /// Returns a `EventOps` object for the subscriber associated with the provided ID.
    fn event_ops(&mut self, subscriber_id: SubscriberId) -> Result<EventOps> {
        // Check if the subscriber_id is valid.
        if self.subscribers.contains(subscriber_id) {
            // The index is valid because the result of `find` was not `None`.
            return Ok(self.epoll_context.ops_unchecked(subscriber_id));
        }
        Err(Error::InvalidId)
    }
}

impl<S: MutEventSubscriber> EventManager<S> {
    const DEFAULT_READY_EVENTS_CAPACITY: usize = 256;

    /// Create a new `EventManger` object.
    pub fn new() -> Result<Self> {
        Self::new_with_capacity(Self::DEFAULT_READY_EVENTS_CAPACITY)
    }

    /// Creates a new `EventManger` object with specified event capacity.
    ///
    /// # Arguments
    ///
    /// * `ready_events_capacity` : maximum number of ready events to be process in a single poll
    pub fn new_with_capacity(ready_events_capacity: usize) -> Result<Self> {
        let manager = EventManager {
            subscribers: Subscribers::new(),
            epoll_context: EpollWrapper::new(ready_events_capacity)?,
            #[cfg(feature = "remote_endpoint")]
            channel: EventManagerChannel::new()?,
        };

        #[cfg(feature = "remote_endpoint")]
        manager
            .epoll_context
            .epoll
            .ctl(
                ControlOperation::Add,
                manager.channel.fd(),
                EpollEvent::new(EventSet::IN, manager.channel.fd() as u64),
            )
            .map_err(|e| Error::Epoll(Errno::from(e)))?;
        Ok(manager)
    }

    /// Run the event loop blocking until events are triggered or an error is returned.
    /// Calls [subscriber.process()](trait.EventSubscriber.html#tymethod.process) for each event.
    ///
    /// On success, it returns number of dispatched events or 0 when interrupted by a signal.
    pub fn run(&mut self) -> Result<usize> {
        self.run_with_timeout(-1)
    }

    /// Wait for events for a maximum timeout of `miliseconds` or until an error is returned.
    /// Calls [subscriber.process()](trait.EventSubscriber.html#tymethod.process) for each event.
    ///
    /// On success, it returns number of dispatched events or 0 when interrupted by a signal.
    pub fn run_with_timeout(&mut self, milliseconds: i32) -> Result<usize> {
        let event_count = self.epoll_context.poll(milliseconds)?;
        self.dispatch_events(event_count);

        Ok(event_count)
    }

    fn dispatch_events(&mut self, event_count: usize) {
        // EpollEvent doesn't implement Eq or PartialEq, so...
        let default_event: EpollEvent = EpollEvent::default();

        // Used to record whether there's an endpoint event that needs to be handled.
        #[cfg(feature = "remote_endpoint")]
        let mut endpoint_event = None;

        // TODO: implement an iterator for EpollWrapper to simplify the abstraction
        // https://github.com/rust-vmm/event-manager/issues/44
        for ev_index in 0..event_count {
            let event = self.epoll_context.ready_events[ev_index];
            let fd = event.fd();

            // Check whether this event has been discarded.
            // EpollWrapper::remove_event() discards an IO event by setting it to default value.
            if event.events() == default_event.events() && fd == default_event.fd() {
                continue;
            }

            if let Some(subscriber_id) = self.epoll_context.subscriber_id(fd) {
                self.subscribers.get_mut_unchecked(subscriber_id).process(
                    Events::with_inner(event),
                    // The `subscriber_id` is valid because we checked it before.
                    &mut self.epoll_context.ops_unchecked(subscriber_id),
                );
            } else {
                #[cfg(feature = "remote_endpoint")]
                {
                    // If we got here, there's a chance the event was triggered by the remote
                    // endpoint fd. Only check for incoming endpoint events right now, and defer
                    // actually handling them until all subscriber events have been handled first.
                    // This prevents subscribers whose events are about to be handled from being
                    // removed by an endpoint request (or other similar situations).
                    if fd == self.channel.fd() {
                        endpoint_event = Some(event);
                        continue;
                    }
                }

                // This should not occur during normal operation.
                unreachable!("Received event on fd from subscriber that is not registered");
            }
        }

        #[cfg(feature = "remote_endpoint")]
        self.dispatch_endpoint_event(endpoint_event);
    }
}

#[cfg(feature = "remote_endpoint")]
impl<S: MutEventSubscriber> EventManager<S> {
    /// Return a `RemoteEndpoint` object, that allows interacting with the `EventManager` from a
    /// different thread. Using `RemoteEndpoint::call_blocking` on the same thread the event loop
    /// runs on leads to a deadlock.
    pub fn remote_endpoint(&self) -> RemoteEndpoint<S> {
        self.channel.remote_endpoint()
    }

    fn dispatch_endpoint_event(&mut self, endpoint_event: Option<EpollEvent>) {
        if let Some(event) = endpoint_event {
            if event.event_set() != EventSet::IN {
                // This situation is virtually impossible to occur. If it does we have
                // a programming error in our code.
                unreachable!();
            }
            self.handle_endpoint_calls();
        }
    }

    fn handle_endpoint_calls(&mut self) {
        // Clear the inner event_fd. We don't do anything about an error here at this point.
        let _ = self.channel.event_fd.read();

        // Process messages. We consider only `Empty` errors can appear here; we don't check
        // for `Disconnected` errors because we keep at least one clone of `channel.sender` alive
        // at all times ourselves.
        while let Ok(msg) = self.channel.receiver.try_recv() {
            match msg.sender {
                Some(sender) => {
                    // We call the inner closure and attempt to send back the result, but can't really do
                    // anything in case of error here.
                    let _ = sender.send((msg.fnbox)(self));
                }
                None => {
                    // Just call the function and discard the result.
                    let _ = (msg.fnbox)(self);
                }
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::super::Error;
    use super::*;

    use std::os::unix::io::{AsRawFd, RawFd};
    use std::sync::{Arc, Mutex};

    use vmm_sys_util::{epoll::EventSet, eventfd::EventFd};

    struct DummySubscriber {
        event_fd_1: EventFd,
        event_fd_2: EventFd,

        // Flags used for checking that the event event_manager called the `process`
        // function for ev1/ev2.
        processed_ev1_out: bool,
        processed_ev2_out: bool,
        processed_ev1_in: bool,

        // Flags used for driving register/unregister/modify of events from
        // outside of the `process` function.
        register_ev2: bool,
        unregister_ev1: bool,
        modify_ev1: bool,
    }

    impl DummySubscriber {
        fn new() -> Self {
            DummySubscriber {
                event_fd_1: EventFd::new(0).unwrap(),
                event_fd_2: EventFd::new(0).unwrap(),
                processed_ev1_out: false,
                processed_ev2_out: false,
                processed_ev1_in: false,
                register_ev2: false,
                unregister_ev1: false,
                modify_ev1: false,
            }
        }
    }

    impl DummySubscriber {
        fn register_ev2(&mut self) {
            self.register_ev2 = true;
        }

        fn unregister_ev1(&mut self) {
            self.unregister_ev1 = true;
        }

        fn modify_ev1(&mut self) {
            self.modify_ev1 = true;
        }

        fn processed_ev1_out(&self) -> bool {
            self.processed_ev1_out
        }

        fn processed_ev2_out(&self) -> bool {
            self.processed_ev2_out
        }

        fn processed_ev1_in(&self) -> bool {
            self.processed_ev1_in
        }

        fn reset_state(&mut self) {
            self.processed_ev1_out = false;
            self.processed_ev2_out = false;
            self.processed_ev1_in = false;
        }

        fn handle_updates(&mut self, event_manager: &mut EventOps) {
            if self.register_ev2 {
                event_manager
                    .add(Events::new(&self.event_fd_2, EventSet::OUT))
                    .unwrap();
                self.register_ev2 = false;
            }

            if self.unregister_ev1 {
                event_manager
                    .remove(Events::new_raw(
                        self.event_fd_1.as_raw_fd(),
                        EventSet::empty(),
                    ))
                    .unwrap();
                self.unregister_ev1 = false;
            }

            if self.modify_ev1 {
                event_manager
                    .modify(Events::new(&self.event_fd_1, EventSet::IN))
                    .unwrap();
                self.modify_ev1 = false;
            }
        }

        fn handle_in(&mut self, source: RawFd) {
            if self.event_fd_1.as_raw_fd() == source {
                self.processed_ev1_in = true;
            }
        }

        fn handle_out(&mut self, source: RawFd) {
            match source {
                _ if self.event_fd_1.as_raw_fd() == source => {
                    self.processed_ev1_out = true;
                }
                _ if self.event_fd_2.as_raw_fd() == source => {
                    self.processed_ev2_out = true;
                }
                _ => {}
            }
        }
    }

    impl MutEventSubscriber for DummySubscriber {
        fn process(&mut self, events: Events, ops: &mut EventOps) {
            let source = events.fd();
            let event_set = events.event_set();

            // We only know how to treat EPOLLOUT and EPOLLIN.
            // If we received anything else just stop processing the event.
            let all_but_in_out = EventSet::all() - EventSet::OUT - EventSet::IN;
            if event_set.intersects(all_but_in_out) {
                return;
            }

            self.handle_updates(ops);

            match event_set {
                EventSet::IN => self.handle_in(source),
                EventSet::OUT => self.handle_out(source),
                _ => {}
            }
        }

        fn init(&mut self, ops: &mut EventOps) {
            let event = Events::new(&self.event_fd_1, EventSet::OUT);
            ops.add(event).unwrap();
        }
    }

    #[test]
    fn test_register() {
        use super::SubscriberOps;

        let mut event_manager = EventManager::<Arc<Mutex<dyn MutEventSubscriber>>>::new().unwrap();
        let dummy_subscriber = Arc::new(Mutex::new(DummySubscriber::new()));

        event_manager.add_subscriber(dummy_subscriber.clone());

        dummy_subscriber.lock().unwrap().register_ev2();

        // When running the loop the first time, ev1 should be processed, but ev2 shouldn't
        // because it was just added as part of processing ev1.
        event_manager.run().unwrap();
        assert_eq!(dummy_subscriber.lock().unwrap().processed_ev1_out(), true);
        assert_eq!(dummy_subscriber.lock().unwrap().processed_ev2_out(), false);

        // Check that both ev1 and ev2 are processed.
        dummy_subscriber.lock().unwrap().reset_state();
        event_manager.run().unwrap();
        assert_eq!(dummy_subscriber.lock().unwrap().processed_ev1_out(), true);
        assert_eq!(dummy_subscriber.lock().unwrap().processed_ev2_out(), true);
    }

    #[test]
    #[should_panic(expected = "FdAlreadyRegistered")]
    fn test_add_invalid_subscriber() {
        use std::os::unix::io::FromRawFd;

        let mut event_manager = EventManager::<Arc<Mutex<dyn MutEventSubscriber>>>::new().unwrap();
        let subscriber = Arc::new(Mutex::new(DummySubscriber::new()));

        event_manager.add_subscriber(subscriber.clone());

        // Create a subscriber with the same registered event as an existing subscriber.
        let invalid_subscriber = Arc::new(Mutex::new(DummySubscriber::new()));
        invalid_subscriber.lock().unwrap().event_fd_1 = unsafe {
            EventFd::from_raw_fd(subscriber.lock().unwrap().event_fd_1.as_raw_fd() as RawFd)
        };

        // This call will generate a panic coming from the way init() on DummySubscriber
        // is implemented. In a production setup, unwraps should probably not be used.
        event_manager.add_subscriber(invalid_subscriber);
    }

    // Test that unregistering an event while processing another one works.
    #[test]
    fn test_unregister() {
        let mut event_manager = EventManager::<Arc<Mutex<dyn MutEventSubscriber>>>::new().unwrap();
        let dummy_subscriber = Arc::new(Mutex::new(DummySubscriber::new()));

        event_manager.add_subscriber(dummy_subscriber.clone());

        // Disable ev1. We should only receive this event once.
        dummy_subscriber.lock().unwrap().unregister_ev1();

        event_manager.run().unwrap();
        assert_eq!(dummy_subscriber.lock().unwrap().processed_ev1_out(), true);

        dummy_subscriber.lock().unwrap().reset_state();

        // We expect no events to be available. Let's run with timeout so that run exists.
        event_manager.run_with_timeout(100).unwrap();
        assert_eq!(dummy_subscriber.lock().unwrap().processed_ev1_out(), false);
    }

    #[test]
    fn test_modify() {
        let mut event_manager = EventManager::<Arc<Mutex<dyn MutEventSubscriber>>>::new().unwrap();
        let dummy_subscriber = Arc::new(Mutex::new(DummySubscriber::new()));

        event_manager.add_subscriber(dummy_subscriber.clone());

        // Modify ev1 so that it waits for EPOLL_IN.
        dummy_subscriber.lock().unwrap().modify_ev1();
        event_manager.run().unwrap();
        assert_eq!(dummy_subscriber.lock().unwrap().processed_ev1_out(), true);
        assert_eq!(dummy_subscriber.lock().unwrap().processed_ev2_out(), false);

        dummy_subscriber.lock().unwrap().reset_state();

        // Make sure ev1 is ready for IN so that we don't loop forever.
        dummy_subscriber
            .lock()
            .unwrap()
            .event_fd_1
            .write(1)
            .unwrap();

        event_manager.run().unwrap();
        assert_eq!(dummy_subscriber.lock().unwrap().processed_ev1_out(), false);
        assert_eq!(dummy_subscriber.lock().unwrap().processed_ev2_out(), false);
        assert_eq!(dummy_subscriber.lock().unwrap().processed_ev1_in(), true);
    }

    #[test]
    fn test_remove_subscriber() {
        let mut event_manager = EventManager::<Arc<Mutex<dyn MutEventSubscriber>>>::new().unwrap();
        let dummy_subscriber = Arc::new(Mutex::new(DummySubscriber::new()));

        let subscriber_id = event_manager.add_subscriber(dummy_subscriber.clone());
        event_manager.run().unwrap();
        assert_eq!(dummy_subscriber.lock().unwrap().processed_ev1_out(), true);

        dummy_subscriber.lock().unwrap().reset_state();

        event_manager.remove_subscriber(subscriber_id).unwrap();

        // We expect no events to be available. Let's run with timeout so that run exits.
        event_manager.run_with_timeout(100).unwrap();
        assert_eq!(dummy_subscriber.lock().unwrap().processed_ev1_out(), false);

        // Removing the subscriber twice should return an error.
        assert_eq!(
            event_manager
                .remove_subscriber(subscriber_id)
                .err()
                .unwrap(),
            Error::InvalidId
        );
    }
}