1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
//! Notify async tasks or threads.
//!
//! This is a synchronization primitive similar to [eventcounts] invented by Dmitry Vyukov.
//!
//! You can use this crate to turn non-blocking data structures into async or blocking data
//! structures. See a [simple mutex] implementation that exposes an async and a blocking interface
//! for acquiring locks.
//!
//! [eventcounts]: https://www.1024cores.net/home/lock-free-algorithms/eventcounts
//! [simple mutex]: https://github.com/smol-rs/event-listener/blob/master/examples/mutex.rs
//!
//! # Examples
//!
//! Wait until another thread sets a boolean flag:
//!
//! ```
//! use std::sync::atomic::{AtomicBool, Ordering};
//! use std::sync::Arc;
//! use std::thread;
//! use std::time::Duration;
//! use std::usize;
//! use event_listener::Event;
//!
//! let flag = Arc::new(AtomicBool::new(false));
//! let event = Arc::new(Event::new());
//!
//! // Spawn a thread that will set the flag after 1 second.
//! thread::spawn({
//!     let flag = flag.clone();
//!     let event = event.clone();
//!     move || {
//!         // Wait for a second.
//!         thread::sleep(Duration::from_secs(1));
//!
//!         // Set the flag.
//!         flag.store(true, Ordering::SeqCst);
//!
//!         // Notify all listeners that the flag has been set.
//!         event.notify(usize::MAX);
//!     }
//! });
//!
//! // Wait until the flag is set.
//! loop {
//!     // Check the flag.
//!     if flag.load(Ordering::SeqCst) {
//!         break;
//!     }
//!
//!     // Start listening for events.
//!     let mut listener = event.listen();
//!
//!     // Check the flag again after creating the listener.
//!     if flag.load(Ordering::SeqCst) {
//!         break;
//!     }
//!
//!     // Wait for a notification and continue the loop.
//!     listener.as_mut().wait();
//! }
//! ```
//!
//! # Features
//!
//! - The `portable-atomic` feature enables the use of the [`portable-atomic`] crate to provide
//!   atomic operations on platforms that don't support them.
//!
//! [`portable-atomic`]: https://crates.io/crates/portable-atomic

#![cfg_attr(all(not(feature = "std"), not(test)), no_std)]
#![warn(missing_docs, missing_debug_implementations, rust_2018_idioms)]
#![doc(
    html_favicon_url = "https://raw.githubusercontent.com/smol-rs/smol/master/assets/images/logo_fullsize_transparent.png"
)]
#![doc(
    html_logo_url = "https://raw.githubusercontent.com/smol-rs/smol/master/assets/images/logo_fullsize_transparent.png"
)]

extern crate alloc;

#[cfg_attr(feature = "std", path = "std.rs")]
#[cfg_attr(not(feature = "std"), path = "no_std.rs")]
mod sys;

mod notify;

use alloc::boxed::Box;

use core::borrow::Borrow;
use core::fmt;
use core::future::Future;
use core::mem::ManuallyDrop;
use core::pin::Pin;
use core::ptr;
use core::task::{Context, Poll, Waker};

#[cfg(all(feature = "std", not(target_family = "wasm")))]
use {
    parking::{Parker, Unparker},
    std::time::{Duration, Instant},
};

use sync::atomic::{AtomicPtr, AtomicUsize, Ordering};
use sync::{Arc, WithMut};

use notify::{Internal, NotificationPrivate};
pub use notify::{IntoNotification, Notification};

/// Useful traits for notifications.
pub mod prelude {
    pub use crate::{IntoNotification, Notification};
}

/// Inner state of [`Event`].
struct Inner<T> {
    /// The number of notified entries, or `usize::MAX` if all of them have been notified.
    ///
    /// If there are no entries, this value is set to `usize::MAX`.
    notified: AtomicUsize,

    /// Inner queue of event listeners.
    ///
    /// On `std` platforms, this is an intrusive linked list. On `no_std` platforms, this is a
    /// more traditional `Vec` of listeners, with an atomic queue used as a backup for high
    /// contention.
    list: sys::List<T>,
}

impl<T> Inner<T> {
    fn new() -> Self {
        Self {
            notified: AtomicUsize::new(core::usize::MAX),
            list: sys::List::new(),
        }
    }
}

/// A synchronization primitive for notifying async tasks and threads.
///
/// Listeners can be registered using [`Event::listen()`]. There are two ways to notify listeners:
///
/// 1. [`Event::notify()`] notifies a number of listeners.
/// 2. [`Event::notify_additional()`] notifies a number of previously unnotified listeners.
///
/// If there are no active listeners at the time a notification is sent, it simply gets lost.
///
/// There are two ways for a listener to wait for a notification:
///
/// 1. In an asynchronous manner using `.await`.
/// 2. In a blocking manner by calling [`EventListener::wait()`] on it.
///
/// If a notified listener is dropped without receiving a notification, dropping will notify
/// another active listener. Whether one *additional* listener will be notified depends on what
/// kind of notification was delivered.
///
/// Listeners are registered and notified in the first-in first-out fashion, ensuring fairness.
pub struct Event<T = ()> {
    /// A pointer to heap-allocated inner state.
    ///
    /// This pointer is initially null and gets lazily initialized on first use. Semantically, it
    /// is an `Arc<Inner>` so it's important to keep in mind that it contributes to the [`Arc`]'s
    /// reference count.
    inner: AtomicPtr<Inner<T>>,
}

unsafe impl<T: Send> Send for Event<T> {}
unsafe impl<T: Send> Sync for Event<T> {}

impl<T> core::panic::UnwindSafe for Event<T> {}
impl<T> core::panic::RefUnwindSafe for Event<T> {}

impl<T> fmt::Debug for Event<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self.try_inner() {
            Some(inner) => {
                let notified_count = inner.notified.load(Ordering::Relaxed);
                let total_count = match inner.list.total_listeners() {
                    Ok(total_count) => total_count,
                    Err(_) => {
                        return f
                            .debug_tuple("Event")
                            .field(&format_args!("<locked>"))
                            .finish()
                    }
                };

                f.debug_struct("Event")
                    .field("listeners_notified", &notified_count)
                    .field("listeners_total", &total_count)
                    .finish()
            }
            None => f
                .debug_tuple("Event")
                .field(&format_args!("<uninitialized>"))
                .finish(),
        }
    }
}

impl Default for Event {
    #[inline]
    fn default() -> Self {
        Self::new()
    }
}

impl<T> Event<T> {
    /// Creates a new `Event` with a tag type.
    ///
    /// Tagging cannot be implemented efficiently on `no_std`, so this is only available when the
    /// `std` feature is enabled.
    ///
    /// # Examples
    ///
    /// ```
    /// use event_listener::Event;
    ///
    /// let event = Event::<usize>::with_tag();
    /// ```
    #[cfg(feature = "std")]
    #[inline]
    pub const fn with_tag() -> Self {
        Self {
            inner: AtomicPtr::new(ptr::null_mut()),
        }
    }

    /// Tell whether any listeners are currently notified.
    ///
    /// # Examples
    ///
    /// ```
    /// use event_listener::Event;
    ///
    /// let event = Event::new();
    /// let listener = event.listen();
    /// assert!(!event.is_notified());
    ///
    /// event.notify(1);
    /// assert!(event.is_notified());
    /// ```
    #[inline]
    pub fn is_notified(&self) -> bool {
        self.try_inner()
            .map_or(false, |inner| inner.notified.load(Ordering::Acquire) > 0)
    }

    /// Returns a guard listening for a notification.
    ///
    /// This method emits a `SeqCst` fence after registering a listener. For now, this method
    /// is an alias for calling [`EventListener::new()`], pinning it to the heap, and then
    /// inserting it into a list.
    ///
    /// # Examples
    ///
    /// ```
    /// use event_listener::Event;
    ///
    /// let event = Event::new();
    /// let listener = event.listen();
    /// ```
    ///
    /// # Caveats
    ///
    /// The above example is equivalent to this code:
    ///
    /// ```
    /// use event_listener::{Event, EventListener};
    ///
    /// let event = Event::new();
    /// let mut listener = Box::pin(EventListener::new());
    /// listener.as_mut().listen(&event);
    /// ```
    ///
    /// It creates a new listener, pins it to the heap, and inserts it into the linked list
    /// of listeners. While this type of usage is simple, it may be desired to eliminate this
    /// heap allocation. In this case, consider using the [`EventListener::new`] constructor
    /// directly, which allows for greater control over where the [`EventListener`] is
    /// allocated. However, users of this `new` method must be careful to ensure that the
    /// [`EventListener`] is `listen`ing before waiting on it; panics may occur otherwise.
    #[cold]
    pub fn listen(&self) -> Pin<Box<EventListener<T>>> {
        let mut listener = Box::pin(EventListener::new());
        listener.as_mut().listen(self);
        listener
    }

    /// Notifies a number of active listeners.
    ///
    /// The number is allowed to be zero or exceed the current number of listeners.
    ///
    /// The [`Notification`] trait is used to define what kind of notification is delivered.
    /// The default implementation (implemented on `usize`) is a notification that only notifies
    /// *at least* the specified number of listeners.
    ///
    /// In certain cases, this function emits a `SeqCst` fence before notifying listeners.
    ///
    /// This function returns the number of [`EventListener`]s that were notified by this call.
    ///
    /// # Caveats
    ///
    /// If the `std` feature is disabled, the notification will be delayed under high contention,
    /// such as when another thread is taking a while to `notify` the event. In this circumstance,
    /// this function will return `0` instead of the number of listeners actually notified. Therefore
    /// if the `std` feature is disabled the return value of this function should not be relied upon
    /// for soundness and should be used only as a hint.
    ///
    /// If the `std` feature is enabled, no spurious returns are possible, since the `std`
    /// implementation uses system locking primitives to ensure there is no unavoidable
    /// contention.
    ///
    /// # Examples
    ///
    /// Use the default notification strategy:
    ///
    /// ```
    /// use event_listener::Event;
    ///
    /// let event = Event::new();
    ///
    /// // This notification gets lost because there are no listeners.
    /// event.notify(1);
    ///
    /// let listener1 = event.listen();
    /// let listener2 = event.listen();
    /// let listener3 = event.listen();
    ///
    /// // Notifies two listeners.
    /// //
    /// // Listener queueing is fair, which means `listener1` and `listener2`
    /// // get notified here since they start listening before `listener3`.
    /// event.notify(2);
    /// ```
    ///
    /// Notify without emitting a `SeqCst` fence. This uses the [`relaxed`] notification strategy.
    /// This is equivalent to calling [`Event::notify_relaxed()`].
    ///
    /// [`relaxed`]: IntoNotification::relaxed
    ///
    /// ```
    /// use event_listener::{prelude::*, Event};
    /// use std::sync::atomic::{self, Ordering};
    ///
    /// let event = Event::new();
    ///
    /// // This notification gets lost because there are no listeners.
    /// event.notify(1.relaxed());
    ///
    /// let listener1 = event.listen();
    /// let listener2 = event.listen();
    /// let listener3 = event.listen();
    ///
    /// // We should emit a fence manually when using relaxed notifications.
    /// atomic::fence(Ordering::SeqCst);
    ///
    /// // Notifies two listeners.
    /// //
    /// // Listener queueing is fair, which means `listener1` and `listener2`
    /// // get notified here since they start listening before `listener3`.
    /// event.notify(2.relaxed());
    /// ```
    ///
    /// Notify additional listeners. In contrast to [`Event::notify()`], this method will notify `n`
    /// *additional* listeners that were previously unnotified. This uses the [`additional`]
    /// notification strategy. This is equivalent to calling [`Event::notify_additional()`].
    ///
    /// [`additional`]: IntoNotification::additional
    ///
    /// ```
    /// use event_listener::{prelude::*, Event};
    ///
    /// let event = Event::new();
    ///
    /// // This notification gets lost because there are no listeners.
    /// event.notify(1.additional());
    ///
    /// let listener1 = event.listen();
    /// let listener2 = event.listen();
    /// let listener3 = event.listen();
    ///
    /// // Notifies two listeners.
    /// //
    /// // Listener queueing is fair, which means `listener1` and `listener2`
    /// // get notified here since they start listening before `listener3`.
    /// event.notify(1.additional());
    /// event.notify(1.additional());
    /// ```
    ///
    /// Notifies with the [`additional`] and [`relaxed`] strategies at the same time. This is
    /// equivalent to calling [`Event::notify_additional_relaxed()`].
    ///
    /// ```
    /// use event_listener::{prelude::*, Event};
    /// use std::sync::atomic::{self, Ordering};
    ///
    /// let event = Event::new();
    ///
    /// // This notification gets lost because there are no listeners.
    /// event.notify(1.additional().relaxed());
    ///
    /// let listener1 = event.listen();
    /// let listener2 = event.listen();
    /// let listener3 = event.listen();
    ///
    /// // We should emit a fence manually when using relaxed notifications.
    /// atomic::fence(Ordering::SeqCst);
    ///
    /// // Notifies two listeners.
    /// //
    /// // Listener queueing is fair, which means `listener1` and `listener2`
    /// // get notified here since they start listening before `listener3`.
    /// event.notify(1.additional().relaxed());
    /// event.notify(1.additional().relaxed());
    /// ```
    #[inline]
    pub fn notify(&self, notify: impl IntoNotification<Tag = T>) -> usize {
        let notify = notify.into_notification();

        // Make sure the notification comes after whatever triggered it.
        notify.fence(notify::Internal::new());

        if let Some(inner) = self.try_inner() {
            let limit = if notify.is_additional(Internal::new()) {
                core::usize::MAX
            } else {
                notify.count(Internal::new())
            };

            // Notify if there is at least one unnotified listener and the number of notified
            // listeners is less than `limit`.
            if inner.needs_notification(limit) {
                return inner.notify(notify);
            }
        }

        0
    }

    /// Return a reference to the inner state if it has been initialized.
    #[inline]
    fn try_inner(&self) -> Option<&Inner<T>> {
        let inner = self.inner.load(Ordering::Acquire);
        unsafe { inner.as_ref() }
    }

    /// Returns a raw, initialized pointer to the inner state.
    ///
    /// This returns a raw pointer instead of reference because `from_raw`
    /// requires raw/mut provenance: <https://github.com/rust-lang/rust/pull/67339>.
    fn inner(&self) -> *const Inner<T> {
        let mut inner = self.inner.load(Ordering::Acquire);

        // If this is the first use, initialize the state.
        if inner.is_null() {
            // Allocate the state on the heap.
            let new = Arc::new(Inner::<T>::new());

            // Convert the state to a raw pointer.
            let new = Arc::into_raw(new) as *mut Inner<T>;

            // Replace the null pointer with the new state pointer.
            inner = self
                .inner
                .compare_exchange(inner, new, Ordering::AcqRel, Ordering::Acquire)
                .unwrap_or_else(|x| x);

            // Check if the old pointer value was indeed null.
            if inner.is_null() {
                // If yes, then use the new state pointer.
                inner = new;
            } else {
                // If not, that means a concurrent operation has initialized the state.
                // In that case, use the old pointer and deallocate the new one.
                unsafe {
                    drop(Arc::from_raw(new));
                }
            }
        }

        inner
    }
}

impl Event<()> {
    /// Creates a new [`Event`].
    ///
    /// # Examples
    ///
    /// ```
    /// use event_listener::Event;
    ///
    /// let event = Event::new();
    /// ```
    #[inline]
    pub const fn new() -> Self {
        Self {
            inner: AtomicPtr::new(ptr::null_mut()),
        }
    }

    /// Notifies a number of active listeners without emitting a `SeqCst` fence.
    ///
    /// The number is allowed to be zero or exceed the current number of listeners.
    ///
    /// In contrast to [`Event::notify_additional()`], this method only makes sure *at least* `n`
    /// listeners among the active ones are notified.
    ///
    /// Unlike [`Event::notify()`], this method does not emit a `SeqCst` fence.
    ///
    /// This method only works for untagged events. In other cases, it is recommended to instead
    /// use [`Event::notify()`] like so:
    ///
    /// ```
    /// use event_listener::{prelude::*, Event};
    /// let event = Event::new();
    ///
    /// // Old way:
    /// event.notify_relaxed(1);
    ///
    /// // New way:
    /// event.notify(1.relaxed());
    /// ```
    ///
    /// # Examples
    ///
    /// ```
    /// use event_listener::Event;
    /// use std::sync::atomic::{self, Ordering};
    ///
    /// let event = Event::new();
    ///
    /// // This notification gets lost because there are no listeners.
    /// event.notify_relaxed(1);
    ///
    /// let listener1 = event.listen();
    /// let listener2 = event.listen();
    /// let listener3 = event.listen();
    ///
    /// // We should emit a fence manually when using relaxed notifications.
    /// atomic::fence(Ordering::SeqCst);
    ///
    /// // Notifies two listeners.
    /// //
    /// // Listener queueing is fair, which means `listener1` and `listener2`
    /// // get notified here since they start listening before `listener3`.
    /// event.notify_relaxed(2);
    /// ```
    #[inline]
    pub fn notify_relaxed(&self, n: usize) -> usize {
        self.notify(n.relaxed())
    }

    /// Notifies a number of active and still unnotified listeners.
    ///
    /// The number is allowed to be zero or exceed the current number of listeners.
    ///
    /// In contrast to [`Event::notify()`], this method will notify `n` *additional* listeners that
    /// were previously unnotified.
    ///
    /// This method emits a `SeqCst` fence before notifying listeners.
    ///
    /// This method only works for untagged events. In other cases, it is recommended to instead
    /// use [`Event::notify()`] like so:
    ///
    /// ```
    /// use event_listener::{prelude::*, Event};
    /// let event = Event::new();
    ///
    /// // Old way:
    /// event.notify_additional(1);
    ///
    /// // New way:
    /// event.notify(1.additional());
    /// ```
    ///
    /// # Examples
    ///
    /// ```
    /// use event_listener::Event;
    ///
    /// let event = Event::new();
    ///
    /// // This notification gets lost because there are no listeners.
    /// event.notify_additional(1);
    ///
    /// let listener1 = event.listen();
    /// let listener2 = event.listen();
    /// let listener3 = event.listen();
    ///
    /// // Notifies two listeners.
    /// //
    /// // Listener queueing is fair, which means `listener1` and `listener2`
    /// // get notified here since they start listening before `listener3`.
    /// event.notify_additional(1);
    /// event.notify_additional(1);
    /// ```
    #[inline]
    pub fn notify_additional(&self, n: usize) -> usize {
        self.notify(n.additional())
    }

    /// Notifies a number of active and still unnotified listeners without emitting a `SeqCst`
    /// fence.
    ///
    /// The number is allowed to be zero or exceed the current number of listeners.
    ///
    /// In contrast to [`Event::notify()`], this method will notify `n` *additional* listeners that
    /// were previously unnotified.
    ///
    /// Unlike [`Event::notify_additional()`], this method does not emit a `SeqCst` fence.
    ///
    /// This method only works for untagged events. In other cases, it is recommended to instead
    /// use [`Event::notify()`] like so:
    ///
    /// ```
    /// use event_listener::{prelude::*, Event};
    /// let event = Event::new();
    ///
    /// // Old way:
    /// event.notify_additional_relaxed(1);
    ///
    /// // New way:
    /// event.notify(1.additional().relaxed());
    /// ```
    ///
    /// # Examples
    ///
    /// ```
    /// use event_listener::Event;
    /// use std::sync::atomic::{self, Ordering};
    ///
    /// let event = Event::new();
    ///
    /// // This notification gets lost because there are no listeners.
    /// event.notify(1);
    ///
    /// let listener1 = event.listen();
    /// let listener2 = event.listen();
    /// let listener3 = event.listen();
    ///
    /// // We should emit a fence manually when using relaxed notifications.
    /// atomic::fence(Ordering::SeqCst);
    ///
    /// // Notifies two listeners.
    /// //
    /// // Listener queueing is fair, which means `listener1` and `listener2`
    /// // get notified here since they start listening before `listener3`.
    /// event.notify_additional_relaxed(1);
    /// event.notify_additional_relaxed(1);
    /// ```
    #[inline]
    pub fn notify_additional_relaxed(&self, n: usize) -> usize {
        self.notify(n.additional().relaxed())
    }
}

impl<T> Drop for Event<T> {
    #[inline]
    fn drop(&mut self) {
        self.inner.with_mut(|&mut inner| {
            // If the state pointer has been initialized, drop it.
            if !inner.is_null() {
                unsafe {
                    drop(Arc::from_raw(inner));
                }
            }
        })
    }
}

pin_project_lite::pin_project! {
    /// A guard waiting for a notification from an [`Event`].
    ///
    /// There are two ways for a listener to wait for a notification:
    ///
    /// 1. In an asynchronous manner using `.await`.
    /// 2. In a blocking manner by calling [`EventListener::wait()`] on it.
    ///
    /// If a notified listener is dropped without receiving a notification, dropping will notify
    /// another active listener. Whether one *additional* listener will be notified depends on what
    /// kind of notification was delivered.
    ///
    /// The listener is not registered into the linked list inside of the [`Event`] by default if
    /// it is created via the `new()` method. It needs to be pinned first before being inserted
    /// using the `listen()` method. After the listener has begun `listen`ing, the user can
    /// `await` it like a future or call `wait()` to block the current thread until it is notified.
    ///
    /// ## Examples
    ///
    /// ```
    /// use event_listener::{Event, EventListener};
    /// use std::sync::{Arc, atomic::{AtomicBool, Ordering}};
    /// use std::thread;
    /// use std::time::Duration;
    ///
    /// // Some flag to wait on.
    /// let flag = Arc::new(AtomicBool::new(false));
    ///
    /// // Create an event to wait on.
    /// let event = Arc::new(Event::new());
    ///
    /// thread::spawn({
    ///     let flag = flag.clone();
    ///     let event = event.clone();
    ///     move || {
    ///         thread::sleep(Duration::from_secs(2));
    ///         flag.store(true, Ordering::SeqCst);
    ///
    ///         // Wake up the listener.
    ///         event.notify_additional(std::usize::MAX);
    ///     }
    /// });
    ///
    /// let listener = EventListener::new();
    ///
    /// // Make sure that the event listener is pinned before doing anything else.
    /// //
    /// // We pin the listener to the stack here, as it lets us avoid a heap allocation.
    /// futures_lite::pin!(listener);
    ///
    /// // Wait for the flag to become ready.
    /// loop {
    ///     if flag.load(Ordering::Acquire) {
    ///         // We are done.
    ///         break;
    ///     }
    ///
    ///     if listener.is_listening() {
    ///         // We are inserted into the linked list and we can now wait.
    ///         listener.as_mut().wait();
    ///     } else {
    ///         // We need to insert ourselves into the list. Since this insertion is an atomic
    ///         // operation, we should check the flag again before waiting.
    ///         listener.as_mut().listen(&event);
    ///     }
    /// }
    /// ```
    ///
    /// The above example is equivalent to the one provided in the crate level example. However,
    /// it has some advantages. By directly creating the listener with `EventListener::new()`,
    /// we have control over how the listener is handled in memory. We take advantage of this by
    /// pinning the `listener` variable to the stack using the [`futures_lite::pin`] macro. In
    /// contrast, `Event::listen` binds the listener to the heap.
    ///
    /// However, this additional power comes with additional responsibility. By default, the
    /// event listener is created in an "uninserted" state. This property means that any
    /// notifications delivered to the [`Event`] by default will not wake up this listener.
    /// Before any notifications can be received, the `listen()` method must be called on
    /// `EventListener` to insert it into the list of listeners. After a `.await` or a `wait()`
    /// call has completed, `listen()` must be called again if the user is still interested in
    /// any events.
    ///
    /// [`futures_lite::pin`]: https://docs.rs/futures-lite/latest/futures_lite/macro.pin.html
    #[project(!Unpin)] // implied by Listener, but can generate better docs
    pub struct EventListener<T = ()> {
        #[pin]
        listener: Listener<T, Arc<Inner<T>>>,
    }
}

unsafe impl<T: Send> Send for EventListener<T> {}
unsafe impl<T: Send> Sync for EventListener<T> {}

impl<T> core::panic::UnwindSafe for EventListener<T> {}
impl<T> core::panic::RefUnwindSafe for EventListener<T> {}

impl<T> Default for EventListener<T> {
    fn default() -> Self {
        Self::new()
    }
}

impl<T> fmt::Debug for EventListener<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("EventListener")
            .field("listening", &self.is_listening())
            .finish()
    }
}

impl<T> EventListener<T> {
    /// Create a new `EventListener` that will wait for a notification from the given [`Event`].
    ///
    /// This function does not register the `EventListener` into the linked list of listeners
    /// contained within the [`Event`]. Make sure to call `listen` before `await`ing on
    /// this future or calling `wait()`.
    ///
    /// ## Examples
    ///
    /// ```
    /// use event_listener::{Event, EventListener};
    ///
    /// let event = Event::new();
    /// let listener = EventListener::new();
    ///
    /// // Make sure that the listener is pinned and listening before doing anything else.
    /// let mut listener = Box::pin(listener);
    /// listener.as_mut().listen(&event);
    /// ```
    pub fn new() -> Self {
        Self {
            listener: Listener {
                event: None,
                listener: None,
            },
        }
    }

    /// Register this listener into the given [`Event`].
    ///
    /// This method can only be called after the listener has been pinned, and must be called before
    /// the listener is polled.
    pub fn listen(mut self: Pin<&mut Self>, event: &Event<T>) {
        let inner = {
            let inner = event.inner();
            unsafe { Arc::clone(&ManuallyDrop::new(Arc::from_raw(inner))) }
        };

        let ListenerProject { event, listener } = self.as_mut().project().listener.project();
        let inner = event.insert(inner);
        inner.insert(listener);

        // Make sure the listener is registered before whatever happens next.
        notify::full_fence();
    }

    /// Tell if this [`EventListener`] is currently listening for a notification.
    ///
    /// # Examples
    ///
    /// ```
    /// use event_listener::{Event, EventListener};
    ///
    /// let event = Event::new();
    /// let mut listener = Box::pin(EventListener::new());
    ///
    /// // The listener starts off not listening.
    /// assert!(!listener.is_listening());
    ///
    /// // After listen() is called, the listener is listening.
    /// listener.as_mut().listen(&event);
    /// assert!(listener.is_listening());
    ///
    /// // Once the future is notified, the listener is no longer listening.
    /// event.notify(1);
    /// listener.as_mut().wait();
    /// assert!(!listener.is_listening());
    /// ```
    pub fn is_listening(&self) -> bool {
        self.listener.listener.is_some()
    }

    /// Blocks until a notification is received.
    ///
    /// # Examples
    ///
    /// ```
    /// use event_listener::Event;
    ///
    /// let event = Event::new();
    /// let mut listener = event.listen();
    ///
    /// // Notify `listener`.
    /// event.notify(1);
    ///
    /// // Receive the notification.
    /// listener.as_mut().wait();
    /// ```
    #[cfg(all(feature = "std", not(target_family = "wasm")))]
    pub fn wait(self: Pin<&mut Self>) -> T {
        self.listener().wait_internal(None).unwrap()
    }

    /// Blocks until a notification is received or a timeout is reached.
    ///
    /// Returns `true` if a notification was received.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::time::Duration;
    /// use event_listener::Event;
    ///
    /// let event = Event::new();
    /// let mut listener = event.listen();
    ///
    /// // There are no notification so this times out.
    /// assert!(listener.as_mut().wait_timeout(Duration::from_secs(1)).is_none());
    /// ```
    #[cfg(all(feature = "std", not(target_family = "wasm")))]
    pub fn wait_timeout(self: Pin<&mut Self>, timeout: Duration) -> Option<T> {
        self.listener()
            .wait_internal(Instant::now().checked_add(timeout))
    }

    /// Blocks until a notification is received or a deadline is reached.
    ///
    /// Returns `true` if a notification was received.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::time::{Duration, Instant};
    /// use event_listener::Event;
    ///
    /// let event = Event::new();
    /// let mut listener = event.listen();
    ///
    /// // There are no notification so this times out.
    /// assert!(listener.as_mut().wait_deadline(Instant::now() + Duration::from_secs(1)).is_none());
    /// ```
    #[cfg(all(feature = "std", not(target_family = "wasm")))]
    pub fn wait_deadline(self: Pin<&mut Self>, deadline: Instant) -> Option<T> {
        self.listener().wait_internal(Some(deadline))
    }

    /// Drops this listener and discards its notification (if any) without notifying another
    /// active listener.
    ///
    /// Returns `true` if a notification was discarded.
    ///
    /// # Examples
    /// ```
    /// use event_listener::Event;
    ///
    /// let event = Event::new();
    /// let mut listener1 = event.listen();
    /// let mut listener2 = event.listen();
    ///
    /// event.notify(1);
    ///
    /// assert!(listener1.as_mut().discard());
    /// assert!(!listener2.as_mut().discard());
    /// ```
    pub fn discard(self: Pin<&mut Self>) -> bool {
        self.project().listener.discard()
    }

    /// Returns `true` if this listener listens to the given `Event`.
    ///
    /// # Examples
    ///
    /// ```
    /// use event_listener::Event;
    ///
    /// let event = Event::new();
    /// let listener = event.listen();
    ///
    /// assert!(listener.listens_to(&event));
    /// ```
    #[inline]
    pub fn listens_to(&self, event: &Event<T>) -> bool {
        if let Some(inner) = &self.listener.event {
            return ptr::eq::<Inner<T>>(&**inner, event.inner.load(Ordering::Acquire));
        }

        false
    }

    /// Returns `true` if both listeners listen to the same `Event`.
    ///
    /// # Examples
    ///
    /// ```
    /// use event_listener::Event;
    ///
    /// let event = Event::new();
    /// let listener1 = event.listen();
    /// let listener2 = event.listen();
    ///
    /// assert!(listener1.same_event(&listener2));
    /// ```
    pub fn same_event(&self, other: &EventListener<T>) -> bool {
        if let (Some(inner1), Some(inner2)) = (self.inner(), other.inner()) {
            return ptr::eq::<Inner<T>>(&**inner1, &**inner2);
        }

        false
    }

    fn listener(self: Pin<&mut Self>) -> Pin<&mut Listener<T, Arc<Inner<T>>>> {
        self.project().listener
    }

    fn inner(&self) -> Option<&Arc<Inner<T>>> {
        self.listener.event.as_ref()
    }
}

impl<T> Future for EventListener<T> {
    type Output = T;

    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        self.listener().poll_internal(cx)
    }
}

pin_project_lite::pin_project! {
    #[project(!Unpin)]
    #[project = ListenerProject]
    struct Listener<T, B: Borrow<Inner<T>>>
    where
        B: Unpin,
    {
        // The reference to the original event.
        event: Option<B>,

        // The inner state of the listener.
        //
        // This is only ever `None` during initialization. After `listen()` has completed, this
        // should be `Some`.
        #[pin]
        listener: Option<sys::Listener<T>>,
    }

    impl<T, B: Borrow<Inner<T>>> PinnedDrop for Listener<T, B>
    where
        B: Unpin,
    {
        fn drop(mut this: Pin<&mut Self>) {
            // If we're being dropped, we need to remove ourself from the list.
            let this = this.project();
            if let Some(inner) = this.event {
                (*inner).borrow().remove(this.listener, true);
            }
        }
    }
}

unsafe impl<T: Send, B: Borrow<Inner<T>> + Unpin + Send> Send for Listener<T, B> {}
unsafe impl<T: Send, B: Borrow<Inner<T>> + Unpin + Sync> Sync for Listener<T, B> {}

impl<T, B: Borrow<Inner<T>> + Unpin> Listener<T, B> {
    /// Wait until the provided deadline.
    #[cfg(all(feature = "std", not(target_family = "wasm")))]
    fn wait_internal(mut self: Pin<&mut Self>, deadline: Option<Instant>) -> Option<T> {
        use std::cell::RefCell;

        std::thread_local! {
            /// Cached thread-local parker/unparker pair.
            static PARKER: RefCell<Option<(Parker, Task)>> = RefCell::new(None);
        }

        // Try to borrow the thread-local parker/unparker pair.
        PARKER
            .try_with({
                let this = self.as_mut();
                |parker| {
                    let mut pair = parker
                        .try_borrow_mut()
                        .expect("Shouldn't be able to borrow parker reentrantly");
                    let (parker, unparker) = pair.get_or_insert_with(|| {
                        let (parker, unparker) = parking::pair();
                        (parker, Task::Unparker(unparker))
                    });

                    this.wait_with_parker(deadline, parker, unparker.as_task_ref())
                }
            })
            .unwrap_or_else(|_| {
                // If the pair isn't accessible, we may be being called in a destructor.
                // Just create a new pair.
                let (parker, unparker) = parking::pair();
                self.wait_with_parker(deadline, &parker, TaskRef::Unparker(&unparker))
            })
    }

    /// Wait until the provided deadline using the specified parker/unparker pair.
    #[cfg(all(feature = "std", not(target_family = "wasm")))]
    fn wait_with_parker(
        self: Pin<&mut Self>,
        deadline: Option<Instant>,
        parker: &Parker,
        unparker: TaskRef<'_>,
    ) -> Option<T> {
        let mut this = self.project();
        let inner = (*this
            .event
            .as_ref()
            .expect("must listen() on event listener before waiting"))
        .borrow();

        // Set the listener's state to `Task`.
        if let Some(tag) = inner.register(this.listener.as_mut(), unparker).notified() {
            // We were already notified, so we don't need to park.
            return Some(tag);
        }

        // Wait until a notification is received or the timeout is reached.
        loop {
            match deadline {
                None => parker.park(),

                Some(deadline) => {
                    // Make sure we're not timed out already.
                    let now = Instant::now();
                    if now >= deadline {
                        // Remove our entry and check if we were notified.
                        return inner
                            .remove(this.listener, false)
                            .expect("We never removed ourself from the list")
                            .notified();
                    }
                }
            }

            // See if we were notified.
            if let Some(tag) = inner.register(this.listener.as_mut(), unparker).notified() {
                return Some(tag);
            }
        }
    }

    /// Drops this listener and discards its notification (if any) without notifying another
    /// active listener.
    fn discard(self: Pin<&mut Self>) -> bool {
        let this = self.project();

        if let Some(inner) = this.event.as_ref() {
            (*inner)
                .borrow()
                .remove(this.listener, false)
                .map_or(false, |state| state.is_notified())
        } else {
            false
        }
    }

    /// Poll this listener for a notification.
    fn poll_internal(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<T> {
        let mut this = self.project();
        let inner = match &this.event {
            Some(inner) => (*inner).borrow(),
            None => panic!(""),
        };

        // Try to register the listener.
        match inner
            .register(this.listener.as_mut(), TaskRef::Waker(cx.waker()))
            .notified()
        {
            Some(tag) => {
                // We were already notified, so we don't need to park.
                Poll::Ready(tag)
            }

            None => {
                // We're now waiting for a notification.
                Poll::Pending
            }
        }
    }
}

/// The state of a listener.
#[derive(PartialEq)]
enum State<T> {
    /// The listener was just created.
    Created,

    /// The listener has received a notification.
    ///
    /// The `bool` is `true` if this was an "additional" notification.
    Notified {
        /// Whether or not this is an "additional" notification.
        additional: bool,

        /// The tag associated with the notification.
        tag: T,
    },

    /// A task is waiting for a notification.
    Task(Task),

    /// Empty hole used to replace a notified listener.
    NotifiedTaken,
}

impl<T> fmt::Debug for State<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Self::Created => f.write_str("Created"),
            Self::Notified { additional, .. } => f
                .debug_struct("Notified")
                .field("additional", additional)
                .finish(),
            Self::Task(_) => f.write_str("Task(_)"),
            Self::NotifiedTaken => f.write_str("NotifiedTaken"),
        }
    }
}

impl<T> State<T> {
    fn is_notified(&self) -> bool {
        matches!(self, Self::Notified { .. } | Self::NotifiedTaken)
    }

    /// If this state was notified, return the tag associated with the notification.
    #[allow(unused)]
    fn notified(self) -> Option<T> {
        match self {
            Self::Notified { tag, .. } => Some(tag),
            Self::NotifiedTaken => panic!("listener was already notified but taken"),
            _ => None,
        }
    }
}

/// The result of registering a listener.
#[derive(Debug, PartialEq)]
enum RegisterResult<T> {
    /// The listener was already notified.
    Notified(T),

    /// The listener has been registered.
    Registered,

    /// The listener was never inserted into the list.
    NeverInserted,
}

impl<T> RegisterResult<T> {
    /// Whether or not the listener was notified.
    ///
    /// Panics if the listener was never inserted into the list.
    fn notified(self) -> Option<T> {
        match self {
            Self::Notified(tag) => Some(tag),
            Self::Registered => None,
            Self::NeverInserted => panic!("listener was never inserted into the list"),
        }
    }
}

/// A task that can be woken up.
#[derive(Debug, Clone)]
enum Task {
    /// A waker that wakes up a future.
    Waker(Waker),

    /// An unparker that wakes up a thread.
    #[cfg(all(feature = "std", not(target_family = "wasm")))]
    Unparker(Unparker),
}

impl Task {
    fn as_task_ref(&self) -> TaskRef<'_> {
        match self {
            Self::Waker(waker) => TaskRef::Waker(waker),
            #[cfg(all(feature = "std", not(target_family = "wasm")))]
            Self::Unparker(unparker) => TaskRef::Unparker(unparker),
        }
    }

    fn wake(self) {
        match self {
            Self::Waker(waker) => waker.wake(),
            #[cfg(all(feature = "std", not(target_family = "wasm")))]
            Self::Unparker(unparker) => {
                unparker.unpark();
            }
        }
    }
}

impl PartialEq for Task {
    fn eq(&self, other: &Self) -> bool {
        self.as_task_ref().will_wake(other.as_task_ref())
    }
}

/// A reference to a task.
#[derive(Clone, Copy)]
enum TaskRef<'a> {
    /// A waker that wakes up a future.
    Waker(&'a Waker),

    /// An unparker that wakes up a thread.
    #[cfg(all(feature = "std", not(target_family = "wasm")))]
    Unparker(&'a Unparker),
}

impl TaskRef<'_> {
    /// Tells if this task will wake up the other task.
    #[allow(unreachable_patterns)]
    fn will_wake(self, other: Self) -> bool {
        match (self, other) {
            (Self::Waker(a), Self::Waker(b)) => a.will_wake(b),
            #[cfg(all(feature = "std", not(target_family = "wasm")))]
            (Self::Unparker(_), Self::Unparker(_)) => {
                // TODO: Use unreleased will_unpark API.
                false
            }
            _ => false,
        }
    }

    /// Converts this task reference to a task by cloning.
    fn into_task(self) -> Task {
        match self {
            Self::Waker(waker) => Task::Waker(waker.clone()),
            #[cfg(all(feature = "std", not(target_family = "wasm")))]
            Self::Unparker(unparker) => Task::Unparker(unparker.clone()),
        }
    }
}

/// Synchronization primitive implementation.
mod sync {
    pub(super) use core::cell;

    #[cfg(not(feature = "portable-atomic"))]
    pub(super) use alloc::sync::Arc;
    #[cfg(not(feature = "portable-atomic"))]
    pub(super) use core::sync::atomic;

    #[cfg(feature = "portable-atomic")]
    pub(super) use portable_atomic_crate as atomic;
    #[cfg(feature = "portable-atomic")]
    pub(super) use portable_atomic_util::Arc;

    #[cfg(feature = "std")]
    pub(super) use std::sync::{Mutex, MutexGuard};

    pub(super) trait WithMut {
        type Output;

        fn with_mut<F, R>(&mut self, f: F) -> R
        where
            F: FnOnce(&mut Self::Output) -> R;
    }

    impl<T> WithMut for atomic::AtomicPtr<T> {
        type Output = *mut T;

        #[inline]
        fn with_mut<F, R>(&mut self, f: F) -> R
        where
            F: FnOnce(&mut Self::Output) -> R,
        {
            f(self.get_mut())
        }
    }
}

fn __test_send_and_sync() {
    fn _assert_send<T: Send>() {}
    fn _assert_sync<T: Sync>() {}

    _assert_send::<Event<()>>();
    _assert_sync::<Event<()>>();
    _assert_send::<EventListener<()>>();
    _assert_sync::<EventListener<()>>();
}