1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
use super::generic::{create_u8x4x4, u8x4x4, Ops, Permutation};

/// LED block cipher's block length is 64 bits, and it supports 3 key lengths of 64, 80 and 128 bits in the [paper](https://link.springer.com/chapter/10.1007/978-3-642-23951-9_22).
pub struct LED {
    /// Each element in the key vector should be 4-bit(ranges from 0x0 to 0xf).
    pub key: Vec<u8>,
    /// `ns` represents the number of steps.
    ns: u8,
    /// `keysize` can be 64, 80 and 128.
    keysize: u8,
    sbox: [u8; 16],
    rsbox: [u8; 16],
}

type LEDstate = u8x4x4;

impl LED {
    /// Initialize a LED cipher.
    pub fn new(key: &[u8]) -> Self {
        let keysize = key.len() * 4;
        let ns = match keysize {
            64 => 8,
            80 => 10,
            128 => 12,
            _ => unimplemented!(),
        };
        LED {
            key: key.to_vec(),
            ns: ns,
            keysize: keysize as u8,
            sbox: SBOX,
            rsbox: RSBOX,
        }
    }

    /// Encrypt a block.
    pub fn encrypt(&self, data: &[u8]) -> Vec<u8> {
        let mut state = create_u8x4x4(data);
        for i in 0..self.ns {
            state = add_round_key(&state, &self.key, self.keysize, i);
            state = step(&state, self.keysize, i, &self.sbox);
        }
        state = add_round_key(&state, &self.key, self.keysize, self.ns);
        state.concat()
    }

    /// Decrypt a block.
    pub fn decrypt(&self, data: &[u8]) -> Vec<u8> {
        let mut state = create_u8x4x4(data);
        for i in (0..self.ns).rev() {
            state = add_round_key(&state, &self.key, self.keysize, i);
            state = inv_step(&state, self.keysize, i, &self.rsbox);
        }
        state = add_round_key(&state, &self.key, self.keysize, 0);
        state.concat()
    }

    // Fault injection
    pub fn with_sbox_byte(mut self, faulty_idx: usize, faulty_val: u8) -> Self {
        let mut sbox = SBOX;
        sbox[faulty_idx] = faulty_val;
        self.sbox = sbox;
        self
    }

    pub fn with_rsbox_byte(mut self, faulty_idx: usize, faulty_val: u8) -> Self {
        let mut rsbox = RSBOX;
        rsbox[faulty_idx] = faulty_val;
        self.sbox = rsbox;
        self
    }
}

fn step(state: &LEDstate, keysize: u8, round: u8, sbox: &[u8]) -> LEDstate {
    let mut out = state.clone();
    for i in 0..4 {
        out = add_constants(&out, round * 4 + i, keysize);
        out = sub_cells(&out, sbox);
        out = shift_rows(&out);
        out = mix_columns_serial(&out);
    }
    out
}
fn inv_step(state: &LEDstate, keysize: u8, round: u8, rsbox: &[u8]) -> LEDstate {
    let mut out = state.clone();
    for i in (0..4).rev() {
        out = inv_mix_columns_serial(&out);
        out = inv_shift_rows(&out);
        out = inv_sub_cells(&out, rsbox);
        out = add_constants(&out, round * 4 + i, keysize);
    }
    out
}
fn add_round_key(state: &LEDstate, key: &Vec<u8>, keysize: u8, round: u8) -> LEDstate {
    let mut rkey: [u8; 16] = [0; 16];
    for i in 0..16 {
        rkey[i] = key[((round * 16 + i as u8) % (keysize / 4)) as usize];
    }
    state.xor(&create_u8x4x4(&rkey))
}
fn add_constants(state: &LEDstate, r: u8, keysize: u8) -> LEDstate {
    state.xor(&[
        [0 ^ (keysize >> 4), (RCON[r as usize] >> 3) & 0x7, 0, 0],
        [1 ^ ((keysize >> 4) & 0xf), RCON[r as usize] & 0x7, 0, 0],
        [2 ^ (keysize & 0xf), (RCON[r as usize] >> 3) & 0x7, 0, 0],
        [3 ^ (keysize & 0xf), RCON[r as usize] & 0x7, 0, 0],
    ])
}
fn sub_cells(state: &LEDstate, sbox: &[u8]) -> LEDstate {
    state.sub_sbox(sbox)
}
fn inv_sub_cells(state: &LEDstate, rsbox: &[u8]) -> LEDstate {
    state.sub_sbox(rsbox)
}
fn shift_rows(state: &LEDstate) -> LEDstate {
    state.lrot()
}
fn inv_shift_rows(state: &LEDstate) -> LEDstate {
    state.rrot()
}
fn mix_columns_serial(state: &LEDstate) -> LEDstate {
    state.gmul(&MDS, 4)
}
fn inv_mix_columns_serial(state: &LEDstate) -> LEDstate {
    state.gmul(&RMDS, 4)
}

pub static RCON: [u8; 48] = [
    0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3E, 0x3D, 0x3B, 0x37, 0x2F, 0x1E, 0x3C, 0x39, 0x33, 0x27, 0x0E,
    0x1D, 0x3A, 0x35, 0x2B, 0x16, 0x2C, 0x18, 0x30, 0x21, 0x02, 0x05, 0x0B, 0x17, 0x2E, 0x1C, 0x38,
    0x31, 0x23, 0x06, 0x0D, 0x1B, 0x36, 0x2D, 0x1A, 0x34, 0x29, 0x12, 0x24, 0x08, 0x11, 0x22, 0x04,
];

pub static SBOX: [u8; 16] = [
    0xC, 0x5, 0x6, 0xB, 0x9, 0x0, 0xA, 0xD, 0x3, 0xE, 0xF, 0x8, 0x4, 0x7, 0x1, 0x2,
];

pub static RSBOX: [u8; 16] = [
    0x5, 0xe, 0xF, 0x8, 0xC, 0x1, 0x2, 0xD, 0xB, 0x4, 0x6, 0x3, 0x0, 0x7, 0x9, 0xA,
];

pub static MDS: [[u8; 4]; 4] = [
    [0x4, 0x1, 0x2, 0x2],
    [0x8, 0x6, 0x5, 0x6],
    [0xB, 0xE, 0xA, 0x9],
    [0x2, 0x2, 0xF, 0xB],
];

pub static RMDS: [[u8; 4]; 4] = [
    [0xc, 0xc, 0xd, 0x4],
    [0x3, 0x8, 0x4, 0x5],
    [0x7, 0x6, 0x2, 0xe],
    [0xd, 0x9, 0x9, 0xd],
];