1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
//! _ethrecv_ can be used to receive ethernet packets, with the goal of being
//! able to do so at a high rate.  It runs a receiver loop in a dedicated
//! thread and passes packets to a application callback implemented using the
//! trait [`PacketHandler`].
//!
//! It optionally supports an `inspect` callback, which passes some receiver
//! statistics to a callback.  It also supports an optional `idle` callback
//! which will be called whenever the receiver has been idle for a configurable
//! amount of time (basically a debouncer for detecting an idle period).
//!
//! # Features
//! | Feature    | Function
//! |------------|----------
//! | `idle`     | Enable support for [`PacketHandler::idle()`].
//! | `inspect`  | Enable support for [`PacketHandler::inspect()`].

#![cfg_attr(docsrs, feature(doc_cfg))]

#[cfg(unix)]
mod unix;

#[cfg(windows)]
mod win;

#[cfg(feature = "idle")]
mod idlemon;

mod cmdsig;
mod err;

use std::{
  sync::{mpsc::Sender, Arc},
  thread
};

#[cfg(any(feature = "idle", feature = "inspect"))]
use std::time::Duration;

#[cfg(unix)]
use parking_lot::Mutex;

#[cfg(windows)]
use std::sync::atomic::AtomicU32;

pub use err::Error;

use cmdsig::CmdSignal;


/// Messages that can be sent back to controller from recever thread.
enum Msg {
  #[cfg(feature = "inspect")]
  Inspect(std::sync::mpsc::Sender<RecvInfo>)
}

#[cfg(feature = "inspect")]
#[derive(Debug)]
pub struct RecvInfo {
  pub overflow_dropped: u32,
  pub if_dropped: u32,
  pub num_raw_pkts: u64,
  pub raw_pkt_bytes: u64,
  pub runtime: Duration
}


/// Application-defined packet handler callback.
pub trait PacketHandler {
  type Error;

  /// Called on the receiver thread before the processing reading and
  /// processing loop has been entered.
  fn init(&mut self) -> Result<(), Self::Error> {
    Ok(())
  }

  /// Called to process packets.
  fn proc(&mut self, pkt: pcap::Packet) -> Result<(), Self::Error>;

  /// Called whenever a timeout has been reached without any new packets
  /// arriving.
  #[cfg(feature = "idle")]
  #[cfg_attr(docsrs, doc(cfg(feature = "idle")))]
  fn idle(&mut self) -> Result<(), Self::Error> {
    Ok(())
  }

  /// Called when the controller has requested an inspection.
  #[cfg(feature = "inspect")]
  #[cfg_attr(docsrs, doc(cfg(feature = "inspect")))]
  #[allow(unused_variables)]
  fn inspect(&self, info: &RecvInfo) {}

  /// Called on the receiver thread once the main loop been been terminated.
  fn shutdown(&mut self) {}
}

/// A builder-like object for initializing the packet receiver thread.
pub struct RecvThread {
  devname: String,
  bufsize: i32,

  #[cfg(feature = "idle")]
  idle_dur: Option<Duration>
}

impl RecvThread {
  pub fn new(devname: &str) -> Self {
    Self {
      devname: devname.to_string(),
      bufsize: 16 * 1024 * 1024,
      #[cfg(feature = "idle")]
      idle_dur: None
    }
  }

  pub fn bufsize<E>(mut self, bufsize: usize) -> Result<Self, Error<E>> {
    self.bufsize_r(bufsize)?;
    Ok(self)
  }

  pub fn bufsize_r<E>(
    &mut self,
    bufsize: usize
  ) -> Result<&mut Self, Error<E>> {
    const MIN: usize = 256 * 1024;
    if bufsize < MIN {
      let m = format!("Buffer size must be at least {}", MIN);
      Err(Error::bad_arg(m))
    } else {
      self.bufsize = i32::try_from(bufsize).map_err(|e| Error::bad_arg(e))?;
      Ok(self)
    }
  }

  #[cfg(feature = "idle")]
  #[cfg_attr(docsrs, doc(cfg(feature = "idle")))]
  pub fn idle_duration(mut self, dur: Duration) -> Self {
    self.idle_dur = Some(dur);
    self
  }

  #[cfg(feature = "idle")]
  #[cfg_attr(docsrs, doc(cfg(feature = "idle")))]
  pub fn idle_duration_r(&mut self, dur: Duration) -> &mut Self {
    self.idle_dur = Some(dur);
    self
  }
}


impl RecvThread {
  pub fn run<E>(
    self,
    mut handler: impl PacketHandler<Error = E> + Send + 'static
  ) -> Result<Controller<E>, Error<E>>
  where
    E: Send + 'static
  {
    let cap = pcap::Capture::from_device(self.devname.as_ref())
      .map_err(|e| Error::NetIface(e.to_string()))?
      .buffer_size(self.bufsize);
    //.timeout(100);
    #[cfg(windows)]
    let cap = cap.immediate_mode(true);
    let cap = cap.open().map_err(|e| Error::NetIface(e.to_string()))?;

    #[cfg(unix)]
    let (ctl_tx, ctl_rx) = mio::unix::pipe::new().unwrap();

    #[cfg(unix)]
    let ctl_tx = Arc::new(Mutex::new(ctl_tx));

    #[cfg(windows)]
    let (cmdreq, hev_wakeup) =
      (Arc::new(AtomicU32::new(0)), unsafe { cap.get_event() });

    let cmdsig = CmdSignal {
      #[cfg(unix)]
      ctl_tx,
      #[cfg(windows)]
      cmdreq: Arc::clone(&cmdreq),
      #[cfg(windows)]
      hev_wakeup
    };

    // Channel used to send requests to receiver thread.
    let (ch_tx, ch_rx) = std::sync::mpsc::channel::<Msg>();

    #[cfg(feature = "idle")]
    let cmdsig2 = cmdsig.clone();

    let jh = thread::spawn(move || {
      handler.init().map_err(|e| Error::App(e))?;

      // If the "idle" feature is used, then kick off the idle monitoring
      // thread.
      #[cfg(feature = "idle")]
      let idle_res = if let Some(dur) = self.idle_dur {
        let r = idlemon::run(dur, cmdsig2);
        Some(r)
      } else {
        None
      };

      #[cfg(unix)]
      let ret = {
        #[cfg(feature = "idle")]
        let idle_sh = if let Some((idle_sh, _)) = &idle_res {
          Some(Arc::clone(idle_sh))
        } else {
          None
        };

        let rp = unix::RunParams {
          ctl_rx,
          #[cfg(feature = "idle")]
          idle_sh,
          ch_rx
        };
        unix::run(cap, handler, rp)
      };

      #[cfg(windows)]
      let ret = {
        #[cfg(feature = "idle")]
        let idle_sh = if let Some((idle_sh, _)) = &idle_res {
          Some(Arc::clone(idle_sh))
        } else {
          None
        };

        let rp = win::RunParams {
          cmdreq,
          #[cfg(feature = "idle")]
          idle_sh,
          ch_rx
        };

        win::run(cap, handler, rp)
      };

      // {unix,win}::run() calls handler.shutdown() because the handler's
      // ownership was passed to it.

      // Kill idle monitoring thread before terminating the receiver thread
      #[cfg(feature = "idle")]
      if let Some((idle_sh, idle_jh)) = idle_res {
        idle_sh.kill();
        let _ = idle_jh.join();
      }

      ret
    });

    Ok(Controller {
      jh: Some(jh),
      cmdsig,
      ch_tx
    })
  }
}


/// A controller that can be used to interact with the receiver thread.
pub struct Controller<E> {
  jh: Option<thread::JoinHandle<Result<(), Error<E>>>>,

  cmdsig: CmdSignal,

  #[allow(dead_code)]
  ch_tx: Sender<Msg>
}

impl<E> Controller<E>
where
  E: 'static
{
  /// Signal the receiver thread that it should call the
  /// [`PacketHandler::inspect()`] callback.
  ///
  /// This call is asynchronous with regards to the callback; the call may
  /// return to the caller before the receiver has received the request.
  #[cfg(feature = "inspect")]
  #[cfg_attr(docsrs, doc(cfg(feature = "inspect")))]
  pub fn signal_inspect(&mut self) -> Result<(), Error<E>> {
    self.cmdsig.inspect();
    Ok(())
  }

  #[cfg(feature = "inspect")]
  #[cfg_attr(docsrs, doc(cfg(feature = "inspect")))]
  pub fn inspect(&self) -> Result<RecvInfo, Error<E>> {
    let (tx, rx) = std::sync::mpsc::channel();
    self
      .ch_tx
      .send(Msg::Inspect(tx))
      .map_err(|e| Error::Internal(e.to_string()))?;
    self.cmdsig.channel();

    rx.recv().map_err(|e| Error::Internal(e.to_string()))
  }

  /// Signal receiver thread to terminate.
  ///
  /// This call is asynchronous; at the time this function returns to the
  /// caller the termination request may not have reached the receiver thread.
  ///
  /// A call to this method should be followed by a call to
  /// [`Controller::wait()`] to wait for the receiver to report termination.
  pub fn signal_shutdown(&self) -> Result<(), Error<E>> {
    if let Some(ref _jh) = self.jh {
      // ToDo: Handle return value
      self.cmdsig.kill()?;
      Ok(())
    } else {
      Ok(())
    }
  }

  /// Wait for receiver to shut down.
  ///
  /// Blocks the calling thread, and assumes that the receiver will be killed
  /// by another source.
  ///
  /// Use [`Controller::signal_shutdown()`] to signal the receiver thread to
  /// shut down before calling `Controller::wait()`.
  ///
  /// To avoid having the application need perform the two-stage shutdown, use
  /// [`Controller::shutdown()`] instead.
  pub fn wait(mut self) -> Result<(), Error<E>> {
    if let Some(jh) = self.jh.take() {
      // unwrap() should be okay, because the application should be unable to
      // pass anything other than Error<E>.
      jh.join().map_err(|e| *e.downcast::<Error<E>>().unwrap())?
    } else {
      Ok(())
    }
  }

  /// Tell receiver thread to terminate and wait for for it to end.
  pub fn shutdown(mut self) -> Result<(), Error<E>> {
    if let Some(jh) = self.jh.take() {
      self.cmdsig.kill()?;

      // unwrap() should be okay, because the application should be unable to
      // pass anything other than Error<E>.
      jh.join().map_err(|e| *e.downcast::<Error<E>>().unwrap())?
    } else {
      Ok(())
    }
  }
}

impl<E> Drop for Controller<E> {
  fn drop(&mut self) {
    if let Some(jh) = self.jh.take() {
      match self.cmdsig.kill::<E>() {
        Ok(_) => {
          // Only wait for thread to terminate if posting the termination
          // request was successful.
          if let Err(e) = jh.join() {
            eprintln!("Receiver thread returned error; {:?}", e);
          }
        }
        Err(e) => {
          eprintln!(
            "Unable to send termination request to receiver thread; {}",
            e
          );
        }
      }
    }
  }
}

// vim: set ft=rust et sw=2 ts=2 sts=2 cinoptions=2 tw=79 :