1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
use core::{fmt, ops};
use byteorder::{ByteOrder, NetworkEndian};

use crate::wire::{Error, Result, Payload, PayloadError, PayloadMut, Reframe, payload};
use crate::wire::pretty_print::{PrettyPrint, PrettyIndent};
use crate::wire::{
    ip::v4::Address as Ipv4Address,
    ethernet::Address as EthernetAddress
};

use super::ip::{Protocol, pretty_print_ip_payload};

/// Minimum MTU required of all links supporting IPv6. See [RFC 8200 § 5].
///
/// [RFC 8200 § 5]: https://tools.ietf.org/html/rfc8200#section-5
pub const MIN_MTU: usize = 1280;

/// A sixteen-octet IPv6 address.
#[derive(Debug, Hash, PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Default)]
pub struct Address(pub [u8; 16]);

/// A 64-bit interface ID.
///
/// This is an instance of an `EUI-64` address. A universally administered IEEE 802 address or an
/// EUI-64 is signified by a 0 in the U/L bit position (the next-to-lower-order bit of the most
/// significant byte), while a globally unique IPv6 Interface Identifier is signified by a 1 in the
/// corresponding position.
#[derive(Debug, Hash, PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Default)]
pub struct InterfaceId(pub [u8; 8]);

enum_with_unknown! {
    /// IPv6 multicast scope.
    pub enum Scope(u8) {
        /// The address is valid for the interface alone.
        InterfaceLocal = 1,
        /// The address is valid on the physical link.
        LinkLocal = 2,
        /// The address is valid for the administrative domain.
        AdminLocal = 4,
        /// The address is valid for a physical datasite.
        SiteLocal = 5,
        /// The address is valid for one organization.
        OrganizationLocal = 8,
        /// The address is for all IPv6 hosts.
        Global = 0xE,
        /// The address is reserved for future use in global.
        ReservedToGlobal = 0xF,
    }
}

impl Address {
    /// The [unspecified address].
    ///
    /// [unspecified address]: https://tools.ietf.org/html/rfc4291#section-2.5.2
    pub const UNSPECIFIED: Address = Address([0x00; 16]);

    /// The link-local [all routers multicast address].
    ///
    /// [all routers multicast address]: https://tools.ietf.org/html/rfc4291#section-2.7.1
    pub const LINK_LOCAL_ALL_NODES: Address =
        Address([0xff, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01]);

    /// The link-local [all nodes multicast address].
    ///
    /// [all nodes multicast address]: https://tools.ietf.org/html/rfc4291#section-2.7.1
    pub const LINK_LOCAL_ALL_ROUTERS: Address =
        Address([0xff, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02]);

    /// The [loopback address].
    ///
    /// [loopback address]: https://tools.ietf.org/html/rfc4291#section-2.5.3
    pub const LOOPBACK: Address =
        Address([0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01]);

    /// Construct an IPv6 address from parts.
    pub fn new(
        a0: u16, a1: u16, a2: u16, a3: u16,
        a4: u16, a5: u16, a6: u16, a7: u16,
    ) -> Address {
        let mut addr = [0u8; 16];
        NetworkEndian::write_u16(&mut addr[0..2], a0);
        NetworkEndian::write_u16(&mut addr[2..4], a1);
        NetworkEndian::write_u16(&mut addr[4..6], a2);
        NetworkEndian::write_u16(&mut addr[6..8], a3);
        NetworkEndian::write_u16(&mut addr[8..10], a4);
        NetworkEndian::write_u16(&mut addr[10..12], a5);
        NetworkEndian::write_u16(&mut addr[12..14], a6);
        NetworkEndian::write_u16(&mut addr[14..16], a7);
        Address(addr)
    }

    /// Construct an IPv6 address from a sequence of octets, in big-endian.
    ///
    /// # Panics
    /// The function panics if `data` is not sixteen octets long.
    pub fn from_bytes(data: &[u8]) -> Address {
        let mut bytes = [0; 16];
        bytes.copy_from_slice(data);
        Address(bytes)
    }

    /// Construct an IPv6 address from a sequence of words, in big-endian.
    ///
    /// # Panics
    /// The function panics if `data` is not 8 words long.
    pub fn from_parts(data: &[u16]) -> Address {
        assert!(data.len() >= 8);
        let mut bytes = [0; 16];
        for word_idx in 0..8 {
            let byte_idx = word_idx * 2;
            NetworkEndian::write_u16(&mut bytes[byte_idx..(byte_idx + 2)], data[word_idx]);
        }
        Address(bytes)
    }

    /// Construct an IPv6 address as a mapped ipv4 address.
    ///
    /// There are some security considerations to take into account. Note that the resulting IPv6
    /// address is always classified as a unicast address even though the source address may not
    /// be! This can create confusion when the IPv4 broadcast address `255.255.255.255` is mapped
    /// or when the scope of an otherwise node-local address such as `127.0.0.1` is involuntarily
    /// expanded.
    pub const fn from_mapped_ipv4(addr: Ipv4Address) -> Address {
        let Ipv4Address([a, b, c, d]) = addr;
        Address([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, a, b, c, d])
    }

    /// Create the address from a permanent ethernet address.
    ///
    /// The address is only valid for link-local scope. See [`from_advertised_id`] for potentially
    /// globally unique unicast addresses from router advertisements.
    pub const fn from_link_local_id(id: InterfaceId) -> Address {
        let InterfaceId([a, b, c, d, e, f, g, h]) = id;
        Address([0xfe, 0x80, 0, 0, 0, 0, 0, 0, a, b, c, d, e, f, g, h])
    }

    /// Return the reserved multicast address for a given scope.
    ///
    /// These addresses must never be assigned to a group or interface.
    // FIXME: const as soon as `match` is const (required for `into`)
    pub fn reserved_multicast(scope: Scope) -> Self {
        Address([0xff, scope.into(), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
    }

    /// Return the multicast address for a given scope identifying all nodes.
    // FIXME: const as soon as `match` is const (required for `into`)
    pub fn all_nodes_multicast(scope: Scope) -> Self {
        Address([0xff, scope.into(), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
    }

    /// Create an address by merging the routing prefix, subnet and interface id.
    ///
    /// Returns `None` if the prefix length of the subnet prefix does not have a length of 64 bits.
    pub fn from_global_unicast_id(net: Subnet, id: InterfaceId) -> Option<Address> {
        if net.prefix != 64 {
            return None;
        }

        let mut addr = net.address;
        addr.0[8..16].copy_from_slice(&id.0[..]);
        Some(addr)
    }

    /// Write a IPv6 address to the given slice.
    ///
    /// # Panics
    /// The function panics if `data` is not 8 words long.
    pub fn write_parts(&self, data: &mut [u16]) {
        assert!(data.len() >= 8);
        for i in 0..8 {
            let byte_idx = i * 2;
            data[i] = NetworkEndian::read_u16(&self.0[byte_idx..(byte_idx + 2)]);
        }
    }

    /// Return an IPv6 address as a sequence of octets, in big-endian.
    pub fn as_bytes(&self) -> &[u8] {
        &self.0
    }

    /// Query whether the IPv6 address is an [unicast address].
    ///
    /// [unicast address]: https://tools.ietf.org/html/rfc4291#section-2.5
    pub fn is_unicast(&self) -> bool {
        !(self.is_multicast() || self.is_unspecified())
    }

    /// Query whether the IPv6 address is a [multicast address].
    ///
    /// [multicast address]: https://tools.ietf.org/html/rfc4291#section-2.7
    pub fn is_multicast(&self) -> bool {
        self.0[0] == 0xff
    }

    /// Query whether the IPv6 address is the [unspecified address].
    ///
    /// [unspecified address]: https://tools.ietf.org/html/rfc4291#section-2.5.2
    pub fn is_unspecified(&self) -> bool {
        self.0 == [0x00; 16]
    }

    /// Query whether the IPv6 address is in the [link-local] scope.
    ///
    /// [link-local]: https://tools.ietf.org/html/rfc4291#section-2.5.6
    pub fn is_link_local(&self) -> bool {
        self.0[0..8] == [0xfe, 0x80, 0x00, 0x00,
                         0x00, 0x00, 0x00, 0x00]
    }

    /// Query whether the IPv6 address is the [loopback address].
    ///
    /// [loopback address]: https://tools.ietf.org/html/rfc4291#section-2.5.3
    pub fn is_loopback(&self) -> bool {
        *self == Self::LOOPBACK
    }

    /// Query whether the IPv6 address is an [IPv4 mapped IPv6 address].
    ///
    /// [IPv4 mapped IPv6 address]: https://tools.ietf.org/html/rfc4291#section-2.5.5.2
    pub fn is_ipv4_mapped(&self) -> bool {
        self.0[0..12] == [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff]
    }

    /// Convert an IPv4 mapped IPv6 address to an IPv4 address.
    pub fn as_ipv4(&self) -> Option<Ipv4Address> {
        if self.is_ipv4_mapped() {
            Some(Ipv4Address([self.0[12], self.0[13], self.0[14], self.0[15]]))
        } else {
            None
        }
    }

    /// Mask the address to some prefix length.
    ///
    /// # Panics
    /// This function panics if `prefix` is greater than 128.
    pub fn mask(&self, prefix: u8) -> Address {
        assert!(prefix <= 128);
        let mut bytes = self.0;
        for (i, part) in bytes.iter_mut().enumerate() {
            // Remaining bits in this part.
            let bits = prefix
                .saturating_sub((i*8) as u8)
                .min(8);
            *part &= !0xffu8
                .checked_shr(bits.into())
                .unwrap_or(0);
        }
        Address(bytes)
    }

    /// The solicited node for the given unicast address.
    ///
    /// # Panics
    /// This function panics if the given address is not
    /// unicast.
    pub fn solicited_node_multicast(&self) -> Address {
        assert!(self.is_unicast());
        let mut bytes = [0xff, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
                     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00];
        bytes[14..].copy_from_slice(&self.0[14..]);
        Address(bytes)
    }

    /// Determine if traffic to the dst address should be accepted.
    ///
    /// Provided that some node has been assigned the IPv6 address given by self, check all
    /// required addresses to which we must react to determine if the packet should be considered
    /// as destined to the local host.
    pub fn accepts(self, addr: Address) -> bool {
        self == addr
            || Address::all_nodes_multicast(Scope::InterfaceLocal) == addr
            || Address::all_nodes_multicast(Scope::LinkLocal) == addr
            || Address::all_nodes_multicast(Scope::Global) == addr
            || (self.is_unicast() && self.solicited_node_multicast() == addr)
    }
}

#[cfg(feature = "std")]
impl From<::std::net::Ipv6Addr> for Address {
    fn from(x: ::std::net::Ipv6Addr) -> Address {
        Address(x.octets())
    }
}

#[cfg(feature = "std")]
impl From<Address> for ::std::net::Ipv6Addr {
    fn from(Address(x): Address) -> ::std::net::Ipv6Addr {
        x.into()
    }
}

impl InterfaceId {
    /// Form an interface id from a unique address.
    ///
    /// This method should only be used when the address is formed from a vendor/hardware provided
    /// address whose guarantee of global uniqueness was specified at the time of its assignment.
    pub const fn from_vendor_ether(addr: EthernetAddress) -> Self {
        let EthernetAddress([a, b, c, d, e, f]) = addr;
        InterfaceId([a ^ 0x2, b, c, 0xff, 0xfe, d, e, f])
    }

    /// Form an interface id from a generated address.
    ///
    /// This method should only be used when the address was generated in such a way that its
    /// global uniqueness can not be guaranteed. This is the case when it was generated randomly.
    pub const fn from_generated_ether(addr: EthernetAddress) -> Self {
        let EthernetAddress([a, b, c, d, e, f]) = addr;
        Self::from_generated_bytes([a, b, c, 0xff, 0xfe, d, e, f])
    }

    /// Form an interface id from generated bytes.
    ///
    /// This method should only be used when the address was generated in such a way that its
    /// global uniqueness can not be guaranteed. This is the case when it was generated randomly.
    pub const fn from_generated_bytes(mut bytes: [u8; 8]) -> Self {
        bytes[0] &= !0x2;
        InterfaceId(bytes)
    }
}

impl fmt::Display for Address {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        if self.is_ipv4_mapped() {
            return write!(f, "::ffff:{}.{}.{}.{}", self.0[12], self.0[13], self.0[14], self.0[15])
        }

        // The string representation of an IPv6 address should
        // collapse a series of 16 bit sections that evaluate
        // to 0 to "::"
        //
        // See https://tools.ietf.org/html/rfc4291#section-2.2
        // for details.
        enum State {
            Head,
            HeadBody,
            Tail,
            TailBody
        }
        let mut words = [0u16; 8];
        self.write_parts(&mut words);
        let mut state = State::Head;
        for word in words.iter() {
            state = match (*word, &state) {
                // Once a u16 equal to zero write a double colon and
                // skip to the next non-zero u16.
                (0, &State::Head) | (0, &State::HeadBody) => {
                    write!(f, "::")?;
                    State::Tail
                },
                // Continue iterating without writing any characters until
                // we hit anothing non-zero value.
                (0, &State::Tail) => State::Tail,
                // When the state is Head or Tail write a u16 in hexadecimal
                // without the leading colon if the value is not 0.
                (_, &State::Head) => {
                    write!(f, "{:x}", word)?;
                    State::HeadBody
                },
                (_, &State::Tail) => {
                    write!(f, "{:x}", word)?;
                    State::TailBody
                },
                // Write the u16 with a leading colon when parsing a value
                // that isn't the first in a section
                (_, &State::HeadBody) | (_, &State::TailBody) => {
                    write!(f, ":{:x}", word)?;
                    state
                }
            }
        }
        Ok(())
    }
}

/// An IPv6 CIDR host: an address and a variable-length subnet masking prefix length.
#[derive(Debug, Hash, PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Default)]
pub struct Cidr {
    address:    Address,
    prefix_len: u8,
}

/// An IPv6 CIDR block.
///
/// Relevant RFCs:
/// * [RFC 1519: Classless Inter-Domain Routing (CIDR)][RFC1519]
///
/// [RFC1519]: https://tools.ietf.org/html/rfc1519
#[derive(Debug, Hash, PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Default)]
pub struct Subnet {
    address: Address,
    prefix: u8,
}

impl Cidr {
    /// The [solicited node prefix].
    ///
    /// [solicited node prefix]: https://tools.ietf.org/html/rfc4291#section-2.7.1
    pub const SOLICITED_NODE_PREFIX: Cidr =
        Cidr {
            address: Address([0xff, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
                              0x00, 0x00, 0x00, 0x01, 0xff, 0x00, 0x00, 0x00]),
            prefix_len: 104
        };

    /// Create an IPv6 CIDR block from the given address and prefix length.
    ///
    /// # Panics
    /// This function panics if the prefix length is larger than 128.
    pub fn new(address: Address, prefix_len: u8) -> Cidr {
        assert!(prefix_len <= 128);
        Cidr { address, prefix_len }
    }

    /// Return the address of this IPv6 CIDR block.
    pub fn address(&self) -> Address {
        self.address
    }

    /// Return the prefix length of this IPv6 CIDR block.
    pub fn prefix_len(&self) -> u8 {
        self.prefix_len
    }

    /// The subnet containing this address.
    pub fn subnet(self) -> Subnet {
        Subnet::from_cidr(self)
    }

    /// Query whether the subnetwork described by this IPv6 CIDR block contains
    /// the given address.
    #[deprecated = "Use contains on `subnet` instead."]
    pub fn contains_address(&self, addr: Address) -> bool {
        self.subnet().contains(addr)
    }

    /// Query whether the host is in a subnetwork contained in the subnetwork of `self`.
    ///
    /// This is used for finding out whether a given address is network or link-local or needs to
    /// be routed.
    #[deprecated = "Use `subnet` on both arguments instead."]
    pub fn contains_subnet(&self, subnet: Cidr) -> bool {
        self.subnet().contains_subnet(subnet.subnet())
    }

    /// Whether to accept a packet directed at some address.
    /// 
    /// See section 2.8 of [RFC4291].
    ///
    /// [4291]: https://tools.ietf.org/html/rfc4291#section-2.8
    pub fn accepts(&self, address: Address) -> bool {
        self.address.accepts(address)
    }
}

impl Subnet {
    /// The subnet that contains all addresses.
    pub const ANY: Self = Subnet { address: Address::UNSPECIFIED, prefix: 0 };

    /// Get the subnet block of a CIDR address.
    pub fn from_cidr(cidr: Cidr) -> Self {
        let address = cidr.address().mask(cidr.prefix_len());

        Subnet {
            address,
            prefix: cidr.prefix_len(),
        }
    }

    /// Return the network mask of this IPv4 CIDR block.
    pub fn netmask(&self) -> Address {
        Address([0xFF; 16]).mask(self.prefix)
    }

    /// Return the prefix length of this IPv4 CIDR block.
    pub fn prefix_len(&self) -> u8 {
        self.prefix
    }

    /// Get the router anycast address of this subnet block.
    ///
    /// This can only return a valid anycast address if the subnet is one of the valid unicast
    /// blocks as anycast and unicast share the same addressing subspace.
    pub fn router_anycast(self) -> Option<Address> {
        // Already has all lower bits zeroed as required.
        Some(self.address)
            .filter(Address::is_unicast)
    }

    /// Query whether a host is contained in the block describe by `self`.
    ///
    /// It completely ignores the host identifiers. Consequently this will also successfully work
    /// for blocks that do not have an address identifying the network itself, that is for prefix
    /// lengths 31 and 32.
    ///
    /// This can be used for finding out whether a given address is network or link-local or needs
    /// to be routed.
    pub fn contains(&self, address: Address) -> bool {
        // Own address is already masked.
        self.address == address.mask(self.prefix)
    }

    /// Check if the other network is a subnet.
    pub fn contains_subnet(&self, other: Subnet) -> bool {
        self.prefix <= other.prefix && self.contains(other.address)
    }
}

impl fmt::Display for Cidr {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        // https://tools.ietf.org/html/rfc4291#section-2.3
        write!(f, "{}/{}", self.address, self.prefix_len)
    }
}

/// A read/write wrapper around an Internet Protocol version 6 packet buffer.
#[derive(Debug, PartialEq, Clone)]
pub struct Packet<T: Payload> {
    buffer: T,
    repr: Repr,
}

byte_wrapper! {
    /// An byte slice containing a potential ipv6 packet.
    #[derive(Debug, PartialEq, Eq)]
    pub struct ipv6([u8]);
}

// Ranges and constants describing the IPv6 header
//
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// |Version| Traffic Class |           Flow Label                  |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// |         Payload Length        |  Next Header  |   Hop Limit   |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// |                                                               |
// +                                                               +
// |                                                               |
// +                         Source Address                        +
// |                                                               |
// +                                                               +
// |                                                               |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// |                                                               |
// +                                                               +
// |                                                               |
// +                      Destination Address                      +
// |                                                               |
// +                                                               +
// |                                                               |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
//
// See https://tools.ietf.org/html/rfc2460#section-3 for details.
mod field {
    use crate::wire::field::Field;
    /// 4-bit version number, 8-bit traffic class, and the 20-bit flow label.
    pub(crate) const VER_TC_FLOW: Field = 0..4;
    /// 16-bit value representing the length of the payload.
    /// Note: Options are included in this length.
    pub(crate) const LENGTH:      Field = 4..6;
    /// 8-bit value identifying the type of header following this one.
    /// Note: The same numbers are used in IPv4.
    pub(crate) const NXT_HDR:     usize = 6;
    /// 8-bit value decremented by each node that forwards this packet.
    /// The packet is discarded when forwarding but the value is 0.
    pub(crate) const HOP_LIMIT:   usize = 7;
    /// IPv6 address of the source node.
    pub(crate) const SRC_ADDR:    Field = 8..24;
    /// IPv6 address of the destination node.
    pub(crate) const DST_ADDR:    Field = 24..40;
}

impl ipv6 {
    /// Create a raw octet buffer with an IPv6 packet structure.
    #[inline]
    pub fn new_unchecked(buffer: &[u8]) -> &Self {
        Self::__from_macro_new_unchecked(buffer)
    }

    /// Create a raw octet buffer with an IPv6 packet structure.
    #[inline]
    pub fn new_unchecked_mut(buffer: &mut [u8]) -> &mut Self {
        Self::__from_macro_new_unchecked_mut(buffer)
    }

    /// Shorthand for a combination of [new_unchecked] and [check_len].
    ///
    /// [new_unchecked]: #method.new_unchecked
    /// [check_len]: #method.check_len
    #[inline]
    pub fn new_checked(buffer: &[u8]) -> Result<&Self> {
        let packet = Self::new_unchecked(buffer);
        packet.check_len()?;
        Ok(packet)
    }

    /// View the packet as a raw byte slice.
    pub fn as_bytes(&self) -> &[u8] {
        &self.0
    }

    /// View the packet as a mutable raw byte slice.
    pub fn as_bytes_mut(&mut self) -> &mut [u8] {
        &mut self.0
    }

    /// Ensure that no accessor method will panic if called.
    /// Returns `Err(Error::Truncated)` if the buffer is too short.
    ///
    /// The result of this check is invalidated by calling [set_payload_len].
    ///
    /// [set_payload_len]: #method.set_payload_len
    #[inline]
    pub fn check_len(&self) -> Result<()> {
        let len = self.0.len();
        if len < field::DST_ADDR.end || len < self.total_len() {
            Err(Error::Truncated)
        } else {
            Ok(())
        }
    }

    /// Return the header length.
    #[inline]
    pub fn header_len(&self) -> usize {
        // This is not a strictly necessary function, but it makes
        // code more readable.
        field::DST_ADDR.end
    }

    /// Return the version field.
    #[inline]
    pub fn version(&self) -> u8 {
        self.0[field::VER_TC_FLOW.start] >> 4
    }

    /// Return the traffic class.
    #[inline]
    pub fn traffic_class(&self) -> u8 {
        ((NetworkEndian::read_u16(&self.0[0..2]) & 0x0ff0) >> 4) as u8
    }

    /// Return the flow label field.
    #[inline]
    pub fn flow_label(&self) -> u32 {
        NetworkEndian::read_u24(&self.0[1..4]) & 0x000fffff
    }

    /// Return the payload length field.
    #[inline]
    pub fn payload_len(&self) -> u16 {
        NetworkEndian::read_u16(&self.0[field::LENGTH])
    }

    /// Return the payload length added to the known header length.
    #[inline]
    pub fn total_len(&self) -> usize {
        self.header_len() + self.payload_len() as usize
    }

    /// Return the next header field.
    #[inline]
    pub fn next_header(&self) -> Protocol {
        Protocol::from(self.0[field::NXT_HDR])
    }

    /// Return the hop limit field.
    #[inline]
    pub fn hop_limit(&self) -> u8 {
        self.0[field::HOP_LIMIT]
    }

    /// Return the source address field.
    #[inline]
    pub fn src_addr(&self) -> Address {
        Address::from_bytes(&self.0[field::SRC_ADDR])
    }

    /// Return the destination address field.
    #[inline]
    pub fn dst_addr(&self) -> Address {
        Address::from_bytes(&self.0[field::DST_ADDR])
    }

    /// Set the version field.
    #[inline]
    pub fn set_version(&mut self, value: u8) {
        // Make sure to retain the lower order bits which contain
        // the higher order bits of the traffic class
        self.0[0] = (self.0[0] & 0x0f) | ((value & 0x0f) << 4);
    }

    /// Set the traffic class field.
    #[inline]
    pub fn set_traffic_class(&mut self, value: u8) {
        let data = &mut self.0;
        // Put the higher order 4-bits of value in the lower order
        // 4-bits of the first byte
        data[0] = (data[0] & 0xf0) | ((value & 0xf0) >> 4);
        // Put the lower order 4-bits of value in the higher order
        // 4-bits of the second byte
        data[1] = (data[1] & 0x0f) | ((value & 0x0f) << 4);
    }

    /// Set the flow label field.
    #[inline]
    pub fn set_flow_label(&mut self, value: u32) {
        // Retain the lower order 4-bits of the traffic class
        let raw = (((self.0[1] & 0xf0) as u32) << 16) | (value & 0x0fffff);
        NetworkEndian::write_u24(&mut self.0[1..4], raw);
    }

    /// Set the payload length field.
    #[inline]
    pub fn set_payload_len(&mut self, value: u16) {
        NetworkEndian::write_u16(&mut self.0[field::LENGTH], value);
    }

    /// Set the next header field.
    #[inline]
    pub fn set_next_header(&mut self, value: Protocol) {
        self.0[field::NXT_HDR] = value.into();
    }

    /// Set the hop limit field.
    #[inline]
    pub fn set_hop_limit(&mut self, value: u8) {
        self.0[field::HOP_LIMIT] = value;
    }

    /// Set the source address field.
    #[inline]
    pub fn set_src_addr(&mut self, value: Address) {
        self.0[field::SRC_ADDR].copy_from_slice(value.as_bytes());
    }

    /// Set the destination address field.
    #[inline]
    pub fn set_dst_addr(&mut self, value: Address) {
        self.0[field::DST_ADDR].copy_from_slice(value.as_bytes());
    }

    /// Return a pointer to the payload.
    #[inline]
    pub fn payload_slice(&self) -> &[u8] {
        let range = self.header_len()..self.total_len();
        &self.0[range]
    }

    /// Return a mutable pointer to the payload.
    #[inline]
    pub fn payload_mut_slice(&mut self) -> &mut [u8] {
        let range = self.header_len()..self.total_len();
        &mut self.0[range]
    }
}

impl<T: Payload> Packet<T> {
    /// Shorthand for a combination of [new_unchecked] and [check_len].
    ///
    /// [new_unchecked]: #method.new_unchecked
    /// [check_len]: #method.check_len
    pub fn new_checked(buffer: T) -> Result<Packet<T>> {
        let repr = {
            let packet = ipv6::new_checked(buffer.payload())?;
            Repr::parse(packet)?
        };
        Ok(Packet {
            buffer,
            repr,
        })
    }

    /// Get an immutable reference to the whole buffer.
    ///
    /// Useful if the buffer is some other packet encapsulation.
    pub fn get_ref(&self) -> &T {
        &self.buffer
    }

    /// Get the repr of the packet header.
    pub fn repr(&self) -> Repr {
        self.repr
    }

    /// Create a new packet without checking the representation.
    ///
    /// Misuse may lead to panics from out-of-bounds access or other subtle inconsistencies. Since
    /// the representation might not represent the actual content in the payload, this also might
    /// mean that seemingly inconsistent values are returned. The usage is still memory safe
    /// though.
    pub fn new_unchecked(buffer: T, repr: Repr) -> Self {
        Packet {
            buffer,
            repr,
        }
    }

    /// Consume the packet, returning the underlying buffer.
    #[inline]
    pub fn into_inner(self) -> T {
        self.buffer
    }
}

impl<T: PayloadMut> Packet<T> {
}

impl<T: Payload> ops::Deref for Packet<T> {
    type Target = ipv6;

    fn deref(&self) -> &ipv6 {
        ipv6::new_unchecked(self.buffer.payload())
    }
}

impl<T: Payload> Payload for Packet<T> {
    fn payload(&self) -> &payload {
        self.payload_slice().into()
    }
}

impl<T: PayloadMut> PayloadMut for Packet<T> {
    fn payload_mut(&mut self) -> &mut payload {
        ipv6::new_unchecked_mut(self.buffer.payload_mut())
            .payload_mut_slice()
            .into()
    }

    fn resize(&mut self, length: usize) -> core::result::Result<(), PayloadError> {
        let hdr_len = self.header_len();
        self.buffer.resize(length + hdr_len)
    }

    fn reframe(&mut self, mut reframe: Reframe)
        -> core::result::Result<(), PayloadError>
    {
        let hdr_len = self.header_len();
        reframe.within_header(hdr_len);
        self.buffer.reframe(reframe)
    }
}


impl<T: Payload> fmt::Display for Packet<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match Repr::parse(self) {
            Ok(repr) => write!(f, "{}", repr),
            Err(err) => {
                write!(f, "IPv6 ({})", err)?;
                Ok(())
            }
        }
    }
}

impl<T: Payload> AsRef<[u8]> for Packet<T> {
    fn as_ref(&self) -> &[u8] {
        self.buffer.payload().into()
    }
}

/// A high-level representation of an Internet Protocol version 6 packet header.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct Repr {
    /// IPv6 address of the source node.
    pub src_addr:    Address,
    /// IPv6 address of the destination node.
    pub dst_addr:    Address,
    /// Protocol contained in the next header.
    pub next_header: Protocol,
    /// Length of the payload including the extension headers.
    pub payload_len: usize,
    /// The 8-bit hop limit field.
    pub hop_limit:   u8
}

impl Repr {
    /// Parse an Internet Protocol version 6 packet and return a high-level representation.
    pub fn parse(packet: &ipv6) -> Result<Repr> {
        // Ensure basic accessors will work
        packet.check_len()?;
        if packet.version() != 6 { return Err(Error::Malformed); }
        Ok(Repr {
            src_addr:    packet.src_addr(),
            dst_addr:    packet.dst_addr(),
            next_header: packet.next_header(),
            payload_len: packet.payload_len() as usize,
            hop_limit:   packet.hop_limit()
        })
    }

    /// Return the length of a header that will be emitted from this high-level representation.
    pub fn buffer_len(&self) -> usize {
        // This function is not strictly necessary, but it can make client code more readable.
        field::DST_ADDR.end
    }

    /// Emit a high-level representation into an Internet Protocol version 6 packet.
    pub fn emit(&self, packet: &mut ipv6) {
        // Make no assumptions about the original state of the packet buffer.
        // Make sure to set every byte.
        packet.set_version(6);
        packet.set_traffic_class(0);
        packet.set_flow_label(0);
        packet.set_payload_len(self.payload_len as u16);
        packet.set_hop_limit(self.hop_limit);
        packet.set_next_header(self.next_header);
        packet.set_src_addr(self.src_addr);
        packet.set_dst_addr(self.dst_addr);
    }
}

impl fmt::Display for Repr {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "IPv6 src={} dst={} nxt_hdr={} hop_limit={}",
               self.src_addr, self.dst_addr, self.next_header, self.hop_limit)
    }
}

// TODO: This is very similar to the implementation for IPv4. Make
// a way to have less copy and pasted code here.
impl PrettyPrint for ipv6 {
    fn pretty_print(buffer: &[u8], f: &mut fmt::Formatter,
                    indent: &mut PrettyIndent) -> fmt::Result {
        // Verify the packet structure.
        let packet = match ipv6::new_checked(buffer) {
            Err(err) => return write!(f, "{}({})", indent, err),
            Ok(frame) => frame,
        };

        // Verify the packet content
        let repr = match Repr::parse(packet) {
            Err(err) => return write!(f, "{}({})", indent, err),
            Ok(ip_repr) => ip_repr,
        };

        write!(f, "{}{}", indent, repr)?;
        pretty_print_ip_payload(f, indent, repr, packet.payload_slice())
    }
}

#[cfg(test)]
mod test {
    use super::{Address, Error, Cidr};
    use super::{ipv6, Protocol, Repr};

    use crate::wire::pretty_print::{PrettyPrinter};
    use crate::wire::ip::v4::Address as Ipv4Address;

    static LINK_LOCAL_ADDR: Address = Address([0xfe, 0x80, 0x00, 0x00,
                                               0x00, 0x00, 0x00, 0x00,
                                               0x00, 0x00, 0x00, 0x00,
                                               0x00, 0x00, 0x00, 0x01]);
    #[test]
    fn test_basic_multicast() {
        assert!(!Address::LINK_LOCAL_ALL_ROUTERS.is_unspecified());
        assert!(Address::LINK_LOCAL_ALL_ROUTERS.is_multicast());
        assert!(!Address::LINK_LOCAL_ALL_ROUTERS.is_link_local());
        assert!(!Address::LINK_LOCAL_ALL_ROUTERS.is_loopback());
        assert!(!Address::LINK_LOCAL_ALL_NODES.is_unspecified());
        assert!(Address::LINK_LOCAL_ALL_NODES.is_multicast());
        assert!(!Address::LINK_LOCAL_ALL_NODES.is_link_local());
        assert!(!Address::LINK_LOCAL_ALL_NODES.is_loopback());
    }

    #[test]
    fn test_basic_link_local() {
        assert!(!LINK_LOCAL_ADDR.is_unspecified());
        assert!(!LINK_LOCAL_ADDR.is_multicast());
        assert!(LINK_LOCAL_ADDR.is_link_local());
        assert!(!LINK_LOCAL_ADDR.is_loopback());
    }

    #[test]
    fn test_basic_loopback() {
        assert!(!Address::LOOPBACK.is_unspecified());
        assert!(!Address::LOOPBACK.is_multicast());
        assert!(!Address::LOOPBACK.is_link_local());
        assert!(Address::LOOPBACK.is_loopback());
    }

    #[test]
    fn test_address_format() {
        assert_eq!("ff02::1",
                   format!("{}", Address::LINK_LOCAL_ALL_NODES));
        assert_eq!("fe80::1",
                   format!("{}", LINK_LOCAL_ADDR));
        assert_eq!("fe80::7f00:0:1",
                   format!("{}", Address::new(0xfe80, 0, 0, 0, 0, 0x7f00, 0x0000, 0x0001)));
        assert_eq!("::",
                   format!("{}", Address::UNSPECIFIED));
        assert_eq!("::1",
                   format!("{}", Address::LOOPBACK));

        #[cfg(feature = "proto-ipv4")]
        assert_eq!("::ffff:192.168.1.1",
                   format!("{}", Address::from(Ipv4Address::new(192, 168, 1, 1))));
    }

    #[test]
    fn test_new() {
        assert_eq!(Address::new(0xff02, 0, 0, 0, 0, 0, 0, 1),
                   Address::LINK_LOCAL_ALL_NODES);
        assert_eq!(Address::new(0xff02, 0, 0, 0, 0, 0, 0, 2),
                   Address::LINK_LOCAL_ALL_ROUTERS);
        assert_eq!(Address::new(0, 0, 0, 0, 0, 0, 0, 1),
                   Address::LOOPBACK);
        assert_eq!(Address::new(0, 0, 0, 0, 0, 0, 0, 0),
                   Address::UNSPECIFIED);
        assert_eq!(Address::new(0xfe80, 0, 0, 0, 0, 0, 0, 1),
                   LINK_LOCAL_ADDR);
    }

    #[test]
    fn test_from_parts() {
        assert_eq!(Address::from_parts(&[0xff02, 0, 0, 0, 0, 0, 0, 1]),
                   Address::LINK_LOCAL_ALL_NODES);
        assert_eq!(Address::from_parts(&[0xff02, 0, 0, 0, 0, 0, 0, 2]),
                   Address::LINK_LOCAL_ALL_ROUTERS);
        assert_eq!(Address::from_parts(&[0, 0, 0, 0, 0, 0, 0, 1]),
                   Address::LOOPBACK);
        assert_eq!(Address::from_parts(&[0, 0, 0, 0, 0, 0, 0, 0]),
                   Address::UNSPECIFIED);
        assert_eq!(Address::from_parts(&[0xfe80, 0, 0, 0, 0, 0, 0, 1]),
                   LINK_LOCAL_ADDR);
    }

    #[test]
    fn test_write_parts() {
        let mut bytes = [0u16; 8];
        {
            Address::LOOPBACK.write_parts(&mut bytes);
            assert_eq!(Address::LOOPBACK, Address::from_parts(&bytes));
        }
        {
            Address::LINK_LOCAL_ALL_ROUTERS.write_parts(&mut bytes);
            assert_eq!(Address::LINK_LOCAL_ALL_ROUTERS, Address::from_parts(&bytes));
        }
        {
            LINK_LOCAL_ADDR.write_parts(&mut bytes);
            assert_eq!(LINK_LOCAL_ADDR, Address::from_parts(&bytes));
        }
    }

    #[test]
    fn test_mask() {
        let addr = Address::new(0x0123, 0x4567, 0x89ab, 0, 0, 0, 0, 1);
        assert_eq!(addr.mask(11).0, [0x01, 0x20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
        assert_eq!(addr.mask(15).0, [0x01, 0x22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
        assert_eq!(addr.mask(26).0, [0x01, 0x23, 0x45, 0x40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
        assert_eq!(addr.mask(128).0, [0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]);
        assert_eq!(addr.mask(127).0, [0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
    }

    #[test]
    fn test_is_ipv4_mapped() {
        assert_eq!(false, Address::UNSPECIFIED.is_ipv4_mapped());
        assert_eq!(true, Address::from_mapped_ipv4(Ipv4Address::new(192, 168, 1, 1)).is_ipv4_mapped());
    }

    #[test]
    fn test_as_ipv4() {
        assert_eq!(None, Address::UNSPECIFIED.as_ipv4());

        let ipv4 = Ipv4Address::new(192, 168, 1, 1);
        assert_eq!(Some(ipv4), Address::from_mapped_ipv4(ipv4).as_ipv4());
    }

    #[test]
    fn test_from_ipv4_address() {
        assert_eq!(Address([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, 192, 168, 1, 1]),
            Address::from_mapped_ipv4(Ipv4Address::new(192, 168, 1, 1)));
        assert_eq!(Address([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, 222, 1, 41, 90]),
            Address::from_mapped_ipv4(Ipv4Address::new(222, 1, 41, 90)));
    }

    #[test]
    fn test_cidr() {
        let cidr = Cidr::new(LINK_LOCAL_ADDR, 64);

        let inside_subnet = [
            [0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
             0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02],
            [0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
             0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88],
            [0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
             0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00],
            [0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
             0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff]
        ];

        let outside_subnet = [
            [0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
             0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01],
            [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
             0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01],
            [0xff, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
             0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01],
            [0xff, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
             0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02]
        ];

        let subnets = [
            ([0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
              0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff],
             65),
            ([0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
              0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01],
             128),
            ([0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
              0x00, 0x00, 0x00, 0x00, 0x12, 0x34, 0x56, 0x78],
             96)
        ];

        let not_subnets = [
            ([0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
              0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff],
             63),
            ([0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
              0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff],
             64),
            ([0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
              0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff],
             65),
            ([0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
              0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01],
             128)
        ];

        for addr in inside_subnet.iter().cloned().map(Address) {
            assert!(cidr.subnet().contains(addr));
        }

        for addr in outside_subnet.iter().cloned().map(Address) {
            assert!(!cidr.subnet().contains(addr));
        }

        for subnet in subnets.iter().map(
            |&(a, p)| Cidr::new(Address(a), p).subnet()) {
            assert!(cidr.subnet().contains_subnet(subnet));
        }

        for subnet in not_subnets.iter().map(
            |&(a, p)| Cidr::new(Address(a), p).subnet()) {
            assert!(!cidr.subnet().contains_subnet(subnet));
        }

        let cidr_without_prefix = Cidr::new(LINK_LOCAL_ADDR, 0);
        assert!(cidr_without_prefix.subnet().contains(Address::LOOPBACK));
    }

    #[test]
    #[should_panic(expected = "destination and source slices have different lengths")]
    fn test_from_bytes_too_long() {
        let _ = Address::from_bytes(&[0u8; 15]);
    }

    #[test]
    #[should_panic(expected = "data.len() >= 8")]
    fn test_from_parts_too_long() {
        let _ = Address::from_parts(&[0u16; 7]);
    }

    static REPR_PACKET_BYTES: [u8; 52] = [0x60, 0x00, 0x00, 0x00,
                                          0x00, 0x0c, 0x11, 0x40,
                                          0xfe, 0x80, 0x00, 0x00,
                                          0x00, 0x00, 0x00, 0x00,
                                          0x00, 0x00, 0x00, 0x00,
                                          0x00, 0x00, 0x00, 0x01,
                                          0xff, 0x02, 0x00, 0x00,
                                          0x00, 0x00, 0x00, 0x00,
                                          0x00, 0x00, 0x00, 0x00,
                                          0x00, 0x00, 0x00, 0x01,
                                          0x00, 0x01, 0x00, 0x02,
                                          0x00, 0x0c, 0x02, 0x4e,
                                          0xff, 0xff, 0xff, 0xff];
    static REPR_PAYLOAD_BYTES: [u8; 12] = [0x00, 0x01, 0x00, 0x02,
                                           0x00, 0x0c, 0x02, 0x4e,
                                           0xff, 0xff, 0xff, 0xff];

    fn packet_repr() -> Repr {
        Repr {
            src_addr:    Address([0xfe, 0x80, 0x00, 0x00,
                                  0x00, 0x00, 0x00, 0x00,
                                  0x00, 0x00, 0x00, 0x00,
                                  0x00, 0x00, 0x00, 0x01]),
            dst_addr:    Address::LINK_LOCAL_ALL_NODES,
            next_header: Protocol::Udp,
            payload_len: 12,
            hop_limit:   64
        }
    }

    #[test]
    fn test_packet_deconstruction() {
        let packet = ipv6::new_unchecked(&REPR_PACKET_BYTES[..]);
        assert_eq!(packet.check_len(), Ok(()));
        assert_eq!(packet.version(), 6);
        assert_eq!(packet.traffic_class(), 0);
        assert_eq!(packet.flow_label(), 0);
        assert_eq!(packet.total_len(), 0x34);
        assert_eq!(packet.payload_len() as usize, REPR_PAYLOAD_BYTES.len());
        assert_eq!(packet.next_header(), Protocol::Udp);
        assert_eq!(packet.hop_limit(), 0x40);
        assert_eq!(packet.src_addr(), Address([0xfe, 0x80, 0x00, 0x00,
                                               0x00, 0x00, 0x00, 0x00,
                                               0x00, 0x00, 0x00, 0x00,
                                               0x00, 0x00, 0x00, 0x01]));
        assert_eq!(packet.dst_addr(), Address::LINK_LOCAL_ALL_NODES);
        assert_eq!(packet.payload_slice(), &REPR_PAYLOAD_BYTES[..]);
    }

    #[test]
    fn test_packet_construction() {
        let mut bytes = [0xff; 52];
        let packet = ipv6::new_unchecked_mut(&mut bytes[..]);
        // Version, Traffic Class, and Flow Label are not
        // byte aligned. make sure the setters and getters
        // do not interfere with each other.
        packet.set_version(6);
        assert_eq!(packet.version(), 6);
        packet.set_traffic_class(0x99);
        assert_eq!(packet.version(), 6);
        assert_eq!(packet.traffic_class(), 0x99);
        packet.set_flow_label(0x54321);
        assert_eq!(packet.traffic_class(), 0x99);
        assert_eq!(packet.flow_label(), 0x54321);
        packet.set_payload_len(0xc);
        packet.set_next_header(Protocol::Udp);
        packet.set_hop_limit(0xfe);
        packet.set_src_addr(Address::LINK_LOCAL_ALL_ROUTERS);
        packet.set_dst_addr(Address::LINK_LOCAL_ALL_NODES);
        packet.payload_mut_slice().copy_from_slice(&REPR_PAYLOAD_BYTES[..]);
        let mut expected_bytes = [
            0x69, 0x95, 0x43, 0x21, 0x00, 0x0c, 0x11, 0xfe,
            0xff, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02,
            0xff, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00
        ];
        let start = expected_bytes.len() - REPR_PAYLOAD_BYTES.len();
        expected_bytes[start..].copy_from_slice(&REPR_PAYLOAD_BYTES[..]);
        assert_eq!(packet.check_len(), Ok(()));
        assert_eq!(packet.as_bytes(), &expected_bytes[..]);
    }

    #[test]
    fn test_overlong() {
        let mut bytes = vec![];
        bytes.extend(&REPR_PACKET_BYTES[..]);
        bytes.push(0);

        assert_eq!(ipv6::new_unchecked(&bytes).payload_slice().len(),
                   REPR_PAYLOAD_BYTES.len());
        assert_eq!(ipv6::new_unchecked_mut(&mut bytes).payload_mut_slice().len(),
                   REPR_PAYLOAD_BYTES.len());
    }

    #[test]
    fn test_total_len_overflow() {
        let mut bytes = vec![];
        bytes.extend(&REPR_PACKET_BYTES[..]);
        ipv6::new_unchecked_mut(&mut bytes).set_payload_len(0x80);

        assert_eq!(ipv6::new_checked(&bytes).unwrap_err(),
                   Error::Truncated);
    }

    #[test]
    fn test_repr_parse_valid() {
        let packet = ipv6::new_unchecked(&REPR_PACKET_BYTES[..]);
        let repr = Repr::parse(packet).unwrap();
        assert_eq!(repr, packet_repr());
    }

    #[test]
    fn test_repr_parse_bad_version() {
        let mut bytes = vec![0; 40];
        let packet = ipv6::new_unchecked_mut(&mut bytes[..]);
        packet.set_version(4);
        packet.set_payload_len(0);
        let packet = ipv6::new_unchecked(packet.as_bytes());
        assert_eq!(Repr::parse(packet), Err(Error::Malformed));
    }

    #[test]
    fn test_repr_parse_smaller_than_header() {
        let mut bytes = vec![0; 40];
        let packet = ipv6::new_unchecked_mut(&mut bytes[..]);
        packet.set_version(6);
        packet.set_payload_len(39);
        let packet = ipv6::new_unchecked(packet.as_bytes());
        assert_eq!(Repr::parse(packet), Err(Error::Truncated));
    }

    #[test]
    fn test_repr_parse_smaller_than_payload() {
        let mut bytes = vec![0; 40];
        let packet = ipv6::new_unchecked_mut(&mut bytes[..]);
        packet.set_version(6);
        packet.set_payload_len(1);
        let packet = ipv6::new_unchecked(packet.as_bytes());
        assert_eq!(Repr::parse(packet), Err(Error::Truncated));
    }

    #[test]
    fn test_basic_repr_emit() {
        let repr = packet_repr();
        let mut bytes = vec![0xff; repr.buffer_len() + REPR_PAYLOAD_BYTES.len()];
        let packet = ipv6::new_unchecked_mut(&mut bytes);
        repr.emit(packet);
        packet.payload_mut_slice().copy_from_slice(&REPR_PAYLOAD_BYTES);
        assert_eq!(packet.as_bytes(), &REPR_PACKET_BYTES[..]);
    }

    #[test]
    fn test_pretty_print() {
        assert_eq!(format!("{}", PrettyPrinter::<ipv6>::new("\n", &&REPR_PACKET_BYTES[..])),
                   "\nIPv6 src=fe80::1 dst=ff02::1 nxt_hdr=UDP hop_limit=64\n \\ UDP src=1 dst=2 len=4");
    }
}