1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
//! Implementation of a software loop-back device.
use crate::managed::Slice;
use crate::time::Instant;
use crate::wire::PayloadMut;

use super::common::{EnqueueFlag, PacketInfo};
use super::{Capabilities, Info, Personality, Recv, Send, Result};

/// A software loop-back device.
///
/// Maintains a ring buffer of packet buffers in flight.
pub struct Loopback<'r, C> {
    buffer: Slice<'r, C>,
    next_recv: usize,
    sent: usize,
    info: PacketInfo,
}

/// A newtype wrapper for the `nic::Handle` of `Loopback`.
///
/// This is only to ensure that future changes and additions can be done without relying on the
/// internal representation.
pub struct Handle(EnqueueFlag);

struct AckRecv<'a>(&'a mut usize, usize, &'a mut usize);

struct AckSend<'a>(&'a mut usize);

impl<'r, C: PayloadMut> Loopback<'r, C> {
    /// Create a loop-back device with mtu.
    ///
    /// It will divide the packet buffer into chunks of the provided mtu and keep track of free and
    /// used buffers
    pub fn new(buffer: Slice<'r, C>) -> Self {
        Loopback {
            buffer,
            next_recv: 0,
            sent: 0,
            info: PacketInfo {
                timestamp: Instant::from_millis(0),
                capabilities: Capabilities::no_support(),
            },
        }
    }

    /// Update the timestamp on all future received packets.
    pub fn set_current_time(&mut self, instant: Instant) {
        self.info.timestamp = instant;
    }

    fn next_recv(&mut self) -> Option<(AckRecv, &mut C)> {
        if self.sent == 0 {
            return None
        }

        let next = self.wrap_buffer(self.next_recv, 1);
        let buffer = &mut self.buffer[self.next_recv];
        let ack = AckRecv(&mut self.next_recv, next, &mut self.sent);
        Some((ack, buffer))
    }

    fn next_send(&mut self) -> Option<(AckSend, &mut C)> {
        if self.sent == self.buffer_count() {
            return None
        }

        let send = self.wrap_buffer(self.next_recv, self.sent);
        let buffer = &mut self.buffer[send];
        let ack = AckSend(&mut self.sent);
        Some((ack, buffer))
    }

    fn buffer_count(&self) -> usize {
        self.buffer.len()
    }

    fn wrap_buffer(&self, base: usize, add: usize) -> usize {
        // FIXME: this can overflow if we are not careful.
        (base + add) % self.buffer_count()
    }

    fn swap_buffers(&mut self, a: usize, b: usize) {
        if a == b {
            return;
        }

        let (a, b) = (a.min(b), a.max(b));
        let (head, tail) = self.buffer.split_at_mut(b);
        core::mem::swap(&mut head[a], &mut tail[0]);
    }
}

impl<'a, C: PayloadMut> super::Device for Loopback<'a, C> {
    type Handle = Handle;
    type Payload = C;

    fn personality(&self) -> Personality {
        Personality::baseline()
    }

    fn tx(&mut self, max: usize, mut sender: impl Send<Self::Handle, Self::Payload>)
        -> Result<usize> 
    {
        let mut count = 0;
        let info = self.info;

        for _ in 0..max {
            let (ack, packet) = match self.next_send() {
                None => return Ok(count),
                Some(packet) => packet,
            };

            let mut flag = Handle(EnqueueFlag::set_true(info));
            sender.send(super::Packet {
                handle: &mut flag,
                payload: packet,
            });

            if flag.0.was_sent() {
                ack.ack();
                count += 1;
            }
        }

        Ok(count)
    }

    fn rx(&mut self, max: usize, mut receptor: impl Recv<Self::Handle, Self::Payload>)
        -> Result<usize>
    {
        let mut count = 0;
        let info = self.info;

        for _ in 0..max {
            let (ack, packet) = match self.next_recv() {
                None => return Ok(count),
                Some(packet) => packet,
            };

            let mut flag = Handle(EnqueueFlag::set_true(info));
            receptor.receive(super::Packet {
                handle: &mut flag,
                payload: packet,
            });
            ack.ack();

            if flag.0.was_sent() {
                // We always have some free slot now.
                let (ack, _) = self.next_send().unwrap();
                ack.ack();

                let minus_one = self.buffer_count() - 1;
                let recv_buffer = self.wrap_buffer(self.next_recv, minus_one);
                let send_buffer = self.wrap_buffer(recv_buffer, self.sent);

                self.swap_buffers(recv_buffer, send_buffer);
            }

            count += 1;
        }

        Ok(count)
    }
}

impl super::Handle for Handle {
    fn queue(&mut self) -> Result<()> {
        self.0.queue()
    }

    fn info(&self) -> &dyn Info {
        self.0.info()
    }
}

impl AckRecv<'_> {
    fn ack(self) {
        *self.0 = self.1;
        *self.2 -= 1;
    }
}

impl AckSend<'_> {
    fn ack(self) {
        *self.0 += 1;
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::nic::{Device as _};

    #[test]
    fn simple_loopback() {
        let buffer = vec![0; 1204];
        let mut loopback = Loopback::<Vec<u8>>::new(vec![buffer].into());
        let length_io = crate::nic::tests::LengthIo;
        assert_eq!(loopback.tx(1, length_io), Ok(1));
        assert_eq!(loopback.rx(1, length_io), Ok(1));
    }
}