1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
//! Module contains conversions for [`I256`] to and from primimitive types.

use super::I256;
use crate::{error::tfie, uint::U256};
use core::num::TryFromIntError;

macro_rules! impl_from {
    ($($t:ty),* $(,)?) => {$(
        impl From<$t> for I256 {
            #[inline]
            fn from(value: $t) -> Self {
                value.as_i256()
            }
        }
    )*};
}

impl_from! {
    bool,
    i8, i16, i32, i64, i128,
    u8, u16, u32, u64, u128,
}

impl TryFrom<U256> for I256 {
    type Error = TryFromIntError;

    fn try_from(value: U256) -> Result<Self, Self::Error> {
        if value > I256::MAX.as_u256() {
            return Err(tfie());
        }
        Ok(value.as_i256())
    }
}

/// This trait defines `as` conversions (casting) from primitive types to
/// [`I256`].
///
/// [`I256`]: struct.I256.html
///
/// # Examples
///
/// Casting a floating point value to an integer is a saturating operation,
/// with `NaN` converting to `0`. So:
///
/// ```
/// # use ethnum::{I256, AsI256};
/// assert_eq!((-1i32).as_i256(), -I256::ONE);
/// assert_eq!(u32::MAX.as_i256(), 0xffffffff);
///
/// assert_eq!(-13.37f64.as_i256(), -13);
/// assert_eq!(42.0f64.as_i256(), 42);
/// assert_eq!(
///     f32::MAX.as_i256(),
///     0xffffff00000000000000000000000000u128.as_i256(),
/// );
/// assert_eq!(
///     f32::MIN.as_i256(),
///     -0xffffff00000000000000000000000000u128.as_i256(),
/// );
///
/// assert_eq!(f64::NEG_INFINITY.as_i256(), I256::MIN);
/// assert_eq!((-2.0f64.powi(256)).as_i256(), I256::MIN);
/// assert_eq!(f64::INFINITY.as_i256(), I256::MAX);
/// assert_eq!(2.0f64.powi(256).as_i256(), I256::MAX);
/// assert_eq!(f64::NAN.as_i256(), 0);
/// ```
pub trait AsI256 {
    /// Perform an `as` conversion to a [`I256`].
    ///
    /// [`I256`]: struct.I256.html
    #[allow(clippy::wrong_self_convention)]
    fn as_i256(self) -> I256;
}

impl AsI256 for I256 {
    #[inline]
    fn as_i256(self) -> I256 {
        self
    }
}

impl AsI256 for U256 {
    #[inline]
    fn as_i256(self) -> I256 {
        U256::as_i256(self)
    }
}

macro_rules! impl_as_i256 {
    ($($t:ty),* $(,)?) => {$(
        impl AsI256 for $t {
            #[inline]
            fn as_i256(self) -> I256 {
                #[allow(unused_comparisons)]
                let hi = if self >= 0 { 0 } else { !0 };
                I256::from_words(hi, self as _)
            }
        }
    )*};
}

impl_as_i256! {
    i8, i16, i32, i64, i128,
    u8, u16, u32, u64, u128,
    isize, usize,
}

impl AsI256 for bool {
    #[inline]
    fn as_i256(self) -> I256 {
        I256::new(self as _)
    }
}

macro_rules! impl_as_i256_float {
    ($($t:ty [$b:ty]),* $(,)?) => {$(
        impl AsI256 for $t {
            #[inline]
            fn as_i256(self) -> I256 {
                // The conversion follows roughly the same rules as converting
                // `f64` to other primitive integer types:
                // - `NaN` => `0`
                // - `(-∞, I256::MIN]` => `I256::MIN`
                // - `(I256::MIN, I256::MAX]` => `value as I256`
                // - `(I256::MAX, +∞)` => `I256::MAX`

                const M: $b = (<$t>::MANTISSA_DIGITS - 1) as _;
                const MAN_MASK: $b = !(!0 << M);
                const MAN_ONE: $b = 1 << M;
                const EXP_MASK: $b = !0 >> <$t>::MANTISSA_DIGITS;
                const EXP_OFFSET: $b = EXP_MASK / 2;
                const ABS_MASK: $b = !0 >> 1;
                const SIG_MASK: $b = !ABS_MASK;

                let abs = <$t>::from_bits(self.to_bits() & ABS_MASK);
                let sign = -(((self.to_bits() & SIG_MASK) >> (<$b>::BITS - 2)) as i128)
                    .wrapping_sub(1); // if self >= 0. { 1 } else { -1 }
                if abs >= 1.0 {
                    let bits = abs.to_bits();
                    let exponent = ((bits >> M) & EXP_MASK) - EXP_OFFSET;
                    let mantissa = (bits & MAN_MASK) | MAN_ONE;
                    if exponent <= M {
                        (I256::from(mantissa >> (M - exponent))) * sign
                    } else if exponent < 255 {
                        (I256::from(mantissa) << (exponent - M)) * sign
                    } else if sign > 0 {
                        I256::MAX
                    } else {
                        I256::MIN
                    }
                } else {
                    I256::ZERO
                }
            }
        }
    )*};
}

impl_as_i256_float! {
    f32[u32], f64[u64],
}

macro_rules! impl_try_into {
    ($($t:ty),* $(,)?) => {$(
        impl TryFrom<I256> for $t {
            type Error = TryFromIntError;

            #[inline]
            fn try_from(x: I256) -> Result<Self, Self::Error> {
                if x <= <$t>::MAX.as_i256() {
                    Ok(*x.low() as _)
                } else {
                    Err(tfie())
                }
            }
        }
    )*};
}

impl_try_into! {
    i8, i16, i32, i64, i128,
    u8, u16, u32, u64, u128,
    isize, usize,
}

macro_rules! impl_into_float {
    ($($t:ty => $f:ident),* $(,)?) => {$(
        impl From<I256> for $t {
            #[inline]
            fn from(x: I256) -> $t {
                x.$f()
            }
        }
    )*};
}

impl_into_float! {
    f32 => as_f32, f64 => as_f64,
}