[][src]Struct ethnum::U256

#[repr(transparent)]pub struct U256(pub [u128; 2]);

A 256-bit unsigned integer type.

Implementations

impl U256[src]

pub const MIN: Self[src]

The smallest value that can be represented by this integer type.

Examples

Basic usage:

assert_eq!(U256::MIN, U256::new(0));

pub const MAX: Self[src]

The largest value that can be represented by this integer type.

Examples

Basic usage:

assert_eq!(
    U256::MAX.to_string(),
    "115792089237316195423570985008687907853269984665640564039457584007913129639935",
);

pub fn from_str_radix(src: &str, radix: u32) -> Result<Self, ParseIntError>[src]

Converts a string slice in a given base to an integer.

The string is expected to be an optional + sign followed by digits. Leading and trailing whitespace represent an error. Digits are a subset of these characters, depending on radix:

  • 0-9
  • a-z
  • A-Z

Panics

This function panics if radix is not in the range from 2 to 36.

Examples

Basic usage:

assert_eq!(U256::from_str_radix("A", 16), Ok(U256::new(10)));

pub const fn count_ones(self) -> u32[src]

Returns the number of ones in the binary representation of self.

Examples

Basic usage:

let n = U256::new(0b01001100);
assert_eq!(n.count_ones(), 3);

pub const fn count_zeros(self) -> u32[src]

Returns the number of zeros in the binary representation of self.

Examples

Basic usage:

assert_eq!(U256::MIN.count_zeros(), 256);
assert_eq!(U256::MAX.count_zeros(), 0);

pub fn leading_zeros(self) -> u32[src]

Returns the number of leading zeros in the binary representation of self.

Examples

Basic usage:

let n = U256::MAX >> 2u32;
assert_eq!(n.leading_zeros(), 2);

pub fn trailing_zeros(self) -> u32[src]

Returns the number of trailing zeros in the binary representation of self.

Examples

Basic usage:

let n = U256::new(0b0101000);
assert_eq!(n.trailing_zeros(), 3);

pub fn leading_ones(self) -> u32[src]

Returns the number of leading ones in the binary representation of self.

Examples

Basic usage:

let n = !(U256::MAX >> 2u32);
assert_eq!(n.leading_ones(), 2);

pub fn trailing_ones(self) -> u32[src]

Returns the number of trailing ones in the binary representation of self.

Examples

Basic usage:

let n = U256::new(0b1010111);
assert_eq!(n.trailing_ones(), 3);

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn rotate_left(self, n: u32) -> Self[src]

Shifts the bits to the left by a specified amount, n, wrapping the truncated bits to the end of the resulting integer.

Please note this isn't the same operation as the << shifting operator!

Examples

Basic usage:

let n = U256::from_words(
    0x13f40000000000000000000000000000,
    0x00000000000000000000000000004f76,
);
let m = U256::new(0x4f7613f4);
assert_eq!(n.rotate_left(16), m);

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn rotate_right(self, n: u32) -> Self[src]

Shifts the bits to the right by a specified amount, n, wrapping the truncated bits to the beginning of the resulting integer.

Please note this isn't the same operation as the >> shifting operator!

Examples

Basic usage:

let n = U256::new(0x4f7613f4);
let m = U256::from_words(
    0x13f40000000000000000000000000000,
    0x00000000000000000000000000004f76,
);

assert_eq!(n.rotate_right(16), m);

pub const fn swap_bytes(self) -> Self[src]

Reverses the byte order of the integer.

Examples

Basic usage:

let n = U256::from_words(
    0x00010203_04050607_08090a0b_0c0d0e0f,
    0x10111213_14151617_18191a1b_1c1d1e1f,
);
assert_eq!(
    n.swap_bytes(),
    U256::from_words(
        0x1f1e1d1c_1b1a1918_17161514_13121110,
        0x0f0e0d0c_0b0a0908_07060504_03020100,
    ),
);

pub const fn reverse_bits(self) -> Self[src]

Reverses the bit pattern of the integer.

Examples

Basic usage:

let n = U256::from_words(
    0x00010203_04050607_08090a0b_0c0d0e0f,
    0x10111213_14151617_18191a1b_1c1d1e1f,
);
assert_eq!(
    n.reverse_bits(),
    U256::from_words(
        0xf878b838_d8589818_e868a828_c8488808,
        0xf070b030_d0509010_e060a020_c0408000,
    ),
);

pub const fn from_be(x: Self) -> Self[src]

Converts an integer from big endian to the target's endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

Basic usage:

let n = U256::new(0x1A);
if cfg!(target_endian = "big") {
    assert_eq!(U256::from_be(n), n);
} else {
    assert_eq!(U256::from_be(n), n.swap_bytes());
}

pub const fn from_le(x: Self) -> Self[src]

Converts an integer from little endian to the target's endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

Basic usage:

let n = U256::new(0x1A);
if cfg!(target_endian = "little") {
    assert_eq!(U256::from_le(n), n)
} else {
    assert_eq!(U256::from_le(n), n.swap_bytes())
}

pub const fn to_be(self) -> Self[src]

Converts self to big endian from the target's endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

Basic usage:

let n = U256::new(0x1A);
if cfg!(target_endian = "big") {
    assert_eq!(n.to_be(), n)
} else {
    assert_eq!(n.to_be(), n.swap_bytes())
}

pub const fn to_le(self) -> Self[src]

Converts self to little endian from the target's endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

Basic usage:

let n = U256::new(0x1A);
if cfg!(target_endian = "little") {
    assert_eq!(n.to_le(), n)
} else {
    assert_eq!(n.to_le(), n.swap_bytes())
}

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn checked_add(self, rhs: Self) -> Option<Self>[src]

Checked integer addition. Computes self + rhs, returning None if overflow occurred.

Examples

Basic usage:

assert_eq!((U256::MAX - 2).checked_add(U256::new(1)), Some(U256::MAX - 1));
assert_eq!((U256::MAX - 2).checked_add(U256::new(3)), None);

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn checked_sub(self, rhs: Self) -> Option<Self>[src]

Checked integer subtraction. Computes self - rhs, returning None if overflow occurred.

Examples

Basic usage:

assert_eq!(U256::new(1).checked_sub(U256::new(1)), Some(U256::ZERO));
assert_eq!(U256::new(0).checked_sub(U256::new(1)), None);

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn checked_mul(self, rhs: Self) -> Option<Self>[src]

Checked integer multiplication. Computes self * rhs, returning None if overflow occurred.

Examples

Basic usage:

assert_eq!(U256::new(5).checked_mul(U256::new(1)), Some(U256::new(5)));
assert_eq!(U256::MAX.checked_mul(U256::new(2)), None);

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn checked_div(self, rhs: Self) -> Option<Self>[src]

Checked integer division. Computes self / rhs, returning None if rhs == 0.

Examples

Basic usage:

assert_eq!(U256::new(128).checked_div(U256::new(2)), Some(U256::new(64)));
assert_eq!(U256::new(1).checked_div(U256::new(0)), None);

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn checked_div_euclid(self, rhs: Self) -> Option<Self>[src]

Checked Euclidean division. Computes self.div_euclid(rhs), returning None if rhs == 0.

Examples

Basic usage:

assert_eq!(U256::new(128).checked_div_euclid(U256::new(2)), Some(U256::new(64)));
assert_eq!(U256::new(1).checked_div_euclid(U256::new(0)), None);

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn checked_rem(self, rhs: Self) -> Option<Self>[src]

Checked integer remainder. Computes self % rhs, returning None if rhs == 0.

Examples

Basic usage:

assert_eq!(U256::new(5).checked_rem(U256::new(2)), Some(U256::new(1)));
assert_eq!(U256::new(5).checked_rem(U256::new(0)), None);

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn checked_rem_euclid(self, rhs: Self) -> Option<Self>[src]

Checked Euclidean modulo. Computes self.rem_euclid(rhs), returning None if rhs == 0.

Examples

Basic usage:

assert_eq!(U256::new(5).checked_rem_euclid(U256::new(2)), Some(U256::new(1)));
assert_eq!(U256::new(5).checked_rem_euclid(U256::new(0)), None);

pub fn checked_neg(self) -> Option<Self>[src]

Checked negation. Computes -self, returning None unless self == 0.

Note that negating any positive integer will overflow.

Examples

Basic usage:

assert_eq!(U256::ZERO.checked_neg(), Some(U256::ZERO));
assert_eq!(U256::new(1).checked_neg(), None);

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn checked_shl(self, rhs: u32) -> Option<Self>[src]

Checked shift left. Computes self << rhs, returning None if rhs is larger than or equal to the number of bits in self.

Examples

Basic usage:

assert_eq!(U256::new(0x1).checked_shl(4), Some(U256::new(0x10)));
assert_eq!(U256::new(0x10).checked_shl(257), None);

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn checked_shr(self, rhs: u32) -> Option<Self>[src]

Checked shift right. Computes self >> rhs, returning None if rhs is larger than or equal to the number of bits in self.

Examples

Basic usage:

assert_eq!(U256::new(0x10).checked_shr(4), Some(U256::new(0x1)));
assert_eq!(U256::new(0x10).checked_shr(257), None);

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn checked_pow(self, exp: u32) -> Option<Self>[src]

Checked exponentiation. Computes self.pow(exp), returning None if overflow occurred.

Examples

Basic usage:

assert_eq!(U256::new(2).checked_pow(5), Some(U256::new(32)));
assert_eq!(U256::MAX.checked_pow(2), None);

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn saturating_add(self, rhs: Self) -> Self[src]

Saturating integer addition. Computes self + rhs, saturating at the numeric bounds instead of overflowing.

Examples

Basic usage:

assert_eq!(U256::new(100).saturating_add(U256::new(1)), U256::new(101));
assert_eq!(U256::MAX.saturating_add(U256::new(127)), U256::MAX);

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn saturating_sub(self, rhs: Self) -> Self[src]

Saturating integer subtraction. Computes self - rhs, saturating at the numeric bounds instead of overflowing.

Examples

Basic usage:

assert_eq!(U256::new(100).saturating_sub(U256::new(27)), U256::new(73));
assert_eq!(U256::new(13).saturating_sub(U256::new(127)), U256::new(0));

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn saturating_mul(self, rhs: Self) -> Self[src]

Saturating integer multiplication. Computes self * rhs, saturating at the numeric bounds instead of overflowing.

Examples

Basic usage:

assert_eq!(U256::new(2).saturating_mul(U256::new(10)), U256::new(20));
assert_eq!((U256::MAX).saturating_mul(U256::new(10)), U256::MAX);

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn saturating_pow(self, exp: u32) -> Self[src]

Saturating integer exponentiation. Computes self.pow(exp), saturating at the numeric bounds instead of overflowing.

Examples

Basic usage:

assert_eq!(U256::new(4).saturating_pow(3), U256::new(64));
assert_eq!(U256::MAX.saturating_pow(2), U256::MAX);

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn wrapping_add(self, rhs: Self) -> Self[src]

Wrapping (modular) addition. Computes self + rhs, wrapping around at the boundary of the type.

Examples

Basic usage:

assert_eq!(U256::new(200).wrapping_add(U256::new(55)), U256::new(255));
assert_eq!(U256::new(200).wrapping_add(U256::MAX), U256::new(199));

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn wrapping_sub(self, rhs: Self) -> Self[src]

Wrapping (modular) subtraction. Computes self - rhs, wrapping around at the boundary of the type.

Examples

Basic usage:

assert_eq!(U256::new(100).wrapping_sub(U256::new(100)), U256::new(0));
assert_eq!(U256::new(100).wrapping_sub(U256::MAX), U256::new(101));

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn wrapping_mul(self, rhs: Self) -> Self[src]

Wrapping (modular) multiplication. Computes self * rhs, wrapping around at the boundary of the type.

Examples

Basic usage:

Please note that this example is shared between integer types. Which explains why u8 is used here.

assert_eq!(U256::new(10).wrapping_mul(U256::new(12)), U256::new(120));
assert_eq!(U256::MAX.wrapping_mul(U256::new(2)), U256::MAX - 1);

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn wrapping_div(self, rhs: Self) -> Self[src]

Wrapping (modular) division. Computes self / rhs. Wrapped division on unsigned types is just normal division. There's no way wrapping could ever happen. This function exists, so that all operations are accounted for in the wrapping operations.

Examples

Basic usage:

assert_eq!(U256::new(100).wrapping_div(U256::new(10)), U256::new(10));

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn wrapping_div_euclid(self, rhs: Self) -> Self[src]

Wrapping Euclidean division. Computes self.div_euclid(rhs). Wrapped division on unsigned types is just normal division. There's no way wrapping could ever happen. This function exists, so that all operations are accounted for in the wrapping operations. Since, for the positive integers, all common definitions of division are equal, this is exactly equal to self.wrapping_div(rhs).

Examples

Basic usage:

assert_eq!(U256::new(100).wrapping_div_euclid(U256::new(10)), U256::new(10));

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn wrapping_rem(self, rhs: Self) -> Self[src]

Wrapping (modular) remainder. Computes self % rhs. Wrapped remainder calculation on unsigned types is just the regular remainder calculation. There's no way wrapping could ever happen. This function exists, so that all operations are accounted for in the wrapping operations.

Examples

Basic usage:

assert_eq!(U256::new(100).wrapping_rem(U256::new(10)), U256::new(0));

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn wrapping_rem_euclid(self, rhs: Self) -> Self[src]

Wrapping Euclidean modulo. Computes self.rem_euclid(rhs). Wrapped modulo calculation on unsigned types is just the regular remainder calculation. There's no way wrapping could ever happen. This function exists, so that all operations are accounted for in the wrapping operations. Since, for the positive integers, all common definitions of division are equal, this is exactly equal to self.wrapping_rem(rhs).

Examples

Basic usage:

assert_eq!(U256::new(100).wrapping_rem_euclid(U256::new(10)), U256::new(0));

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn wrapping_neg(self) -> Self[src]

Wrapping (modular) negation. Computes -self, wrapping around at the boundary of the type.

Since unsigned types do not have negative equivalents all applications of this function will wrap (except for -0). For values smaller than the corresponding signed type's maximum the result is the same as casting the corresponding signed value. Any larger values are equivalent to MAX + 1 - (val - MAX - 1) where MAX is the corresponding signed type's maximum.

Examples

Basic usage:

Please note that this example is shared between integer types. Which explains why i8 is used here.

assert_eq!(U256::new(100).wrapping_neg(), (-100i128).as_u256());
assert_eq!(
    U256::from_words(i128::MIN as _, 0).wrapping_neg(),
    U256::from_words(i128::MIN as _, 0),
);

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn wrapping_shl(self, rhs: u32) -> Self[src]

Panic-free bitwise shift-left; yields self << mask(rhs), where mask removes any high-order bits of rhs that would cause the shift to exceed the bitwidth of the type.

Note that this is not the same as a rotate-left; the RHS of a wrapping shift-left is restricted to the range of the type, rather than the bits shifted out of the LHS being returned to the other end. The primitive integer types all implement a rotate_left function, which maybe what you want instead.

Examples

Basic usage:

assert_eq!(U256::new(1).wrapping_shl(7), U256::new(128));
assert_eq!(U256::new(1).wrapping_shl(128), U256::from_words(1, 0));
assert_eq!(U256::new(1).wrapping_shl(256), U256::new(1));

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn wrapping_shr(self, rhs: u32) -> Self[src]

Panic-free bitwise shift-right; yields self >> mask(rhs), where mask removes any high-order bits of rhs that would cause the shift to exceed the bitwidth of the type.

Note that this is not the same as a rotate-right; the RHS of a wrapping shift-right is restricted to the range of the type, rather than the bits shifted out of the LHS being returned to the other end. The primitive integer types all implement a rotate_right function, which may be what you want instead.

Examples

Basic usage:

assert_eq!(U256::new(128).wrapping_shr(7), U256::new(1));
assert_eq!(U256::from_words(128, 0).wrapping_shr(128), U256::new(128));
assert_eq!(U256::new(128).wrapping_shr(256), U256::new(128));

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn wrapping_pow(self, exp: u32) -> Self[src]

Wrapping (modular) exponentiation. Computes self.pow(exp), wrapping around at the boundary of the type.

Examples

Basic usage:

assert_eq!(U256::new(3).wrapping_pow(5), U256::new(243));
assert_eq!(
    U256::new(1337).wrapping_pow(42),
    U256::from_words(
        45367329835866155830012179193722278514,
        159264946433345088039815329994094210673,
    ),
);

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn overflowing_add(self, rhs: Self) -> (Self, bool)[src]

Calculates self + rhs

Returns a tuple of the addition along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

Examples

Basic usage

assert_eq!(U256::new(5).overflowing_add(U256::new(2)), (U256::new(7), false));
assert_eq!(U256::MAX.overflowing_add(U256::new(1)), (U256::new(0), true));

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn overflowing_sub(self, rhs: Self) -> (Self, bool)[src]

Calculates self - rhs

Returns a tuple of the subtraction along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

Examples

Basic usage

assert_eq!(U256::new(5).overflowing_sub(U256::new(2)), (U256::new(3), false));
assert_eq!(U256::new(0).overflowing_sub(U256::new(1)), (U256::MAX, true));

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn overflowing_mul(self, rhs: Self) -> (Self, bool)[src]

Calculates the multiplication of self and rhs.

Returns a tuple of the multiplication along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

Examples

Basic usage:

Please note that this example is shared between integer types. Which explains why u32 is used here.

assert_eq!(U256::new(5).overflowing_mul(U256::new(2)), (U256::new(10), false));
assert_eq!(
    U256::MAX.overflowing_mul(U256::new(2)),
    (U256::MAX - 1, true),
);

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn overflowing_div(self, rhs: Self) -> (Self, bool)[src]

Calculates the divisor when self is divided by rhs.

Returns a tuple of the divisor along with a boolean indicating whether an arithmetic overflow would occur. Note that for unsigned integers overflow never occurs, so the second value is always false.

Panics

This function will panic if rhs is 0.

Examples

Basic usage

assert_eq!(U256::new(5).overflowing_div(U256::new(2)), (U256::new(2), false));

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn overflowing_div_euclid(self, rhs: Self) -> (Self, bool)[src]

Calculates the quotient of Euclidean division self.div_euclid(rhs).

Returns a tuple of the divisor along with a boolean indicating whether an arithmetic overflow would occur. Note that for unsigned integers overflow never occurs, so the second value is always false. Since, for the positive integers, all common definitions of division are equal, this is exactly equal to self.overflowing_div(rhs).

Panics

This function will panic if rhs is 0.

Examples

Basic usage

assert_eq!(U256::new(5).overflowing_div_euclid(U256::new(2)), (U256::new(2), false));

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn overflowing_rem(self, rhs: Self) -> (Self, bool)[src]

Calculates the remainder when self is divided by rhs.

Returns a tuple of the remainder after dividing along with a boolean indicating whether an arithmetic overflow would occur. Note that for unsigned integers overflow never occurs, so the second value is always false.

Panics

This function will panic if rhs is 0.

Examples

Basic usage

assert_eq!(U256::new(5).overflowing_rem(U256::new(2)), (U256::new(1), false));

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn overflowing_rem_euclid(self, rhs: Self) -> (Self, bool)[src]

Calculates the remainder self.rem_euclid(rhs) as if by Euclidean division.

Returns a tuple of the modulo after dividing along with a boolean indicating whether an arithmetic overflow would occur. Note that for unsigned integers overflow never occurs, so the second value is always false. Since, for the positive integers, all common definitions of division are equal, this operation is exactly equal to self.overflowing_rem(rhs).

Panics

This function will panic if rhs is 0.

Examples

Basic usage

assert_eq!(U256::new(5).overflowing_rem_euclid(U256::new(2)), (U256::new(1), false));

pub fn overflowing_neg(self) -> (Self, bool)[src]

Negates self in an overflowing fashion.

Returns !self + 1 using wrapping operations to return the value that represents the negation of this unsigned value. Note that for positive unsigned values overflow always occurs, but negating 0 does not overflow.

Examples

Basic usage

assert_eq!(U256::new(0).overflowing_neg(), (U256::new(0), false));
assert_eq!(U256::new(2).overflowing_neg(), ((-2i32).as_u256(), true));

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn overflowing_shl(self, rhs: u32) -> (Self, bool)[src]

Shifts self left by rhs bits.

Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.

Examples

Basic usage

assert_eq!(U256::new(0x1).overflowing_shl(4), (U256::new(0x10), false));
assert_eq!(U256::new(0x1).overflowing_shl(260), (U256::new(0x10), true));

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn overflowing_shr(self, rhs: u32) -> (Self, bool)[src]

Shifts self right by rhs bits.

Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.

Examples

Basic usage

assert_eq!(U256::new(0x10).overflowing_shr(4), (U256::new(0x1), false));
assert_eq!(U256::new(0x10).overflowing_shr(260), (U256::new(0x1), true));

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn overflowing_pow(self, exp: u32) -> (Self, bool)[src]

Raises self to the power of exp, using exponentiation by squaring.

Returns a tuple of the exponentiation along with a bool indicating whether an overflow happened.

Examples

Basic usage:

assert_eq!(U256::new(3).overflowing_pow(5), (U256::new(243), false));
assert_eq!(
    U256::new(1337).overflowing_pow(42),
    (
        U256::from_words(
            45367329835866155830012179193722278514,
            159264946433345088039815329994094210673,
        ),
        true,
    )
);

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn pow(self, exp: u32) -> Self[src]

Raises self to the power of exp, using exponentiation by squaring.

Examples

Basic usage:

assert_eq!(U256::new(2).pow(5), U256::new(32));

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn div_euclid(self, rhs: Self) -> Self[src]

Performs Euclidean division.

Since, for the positive integers, all common definitions of division are equal, this is exactly equal to self / rhs.

Panics

This function will panic if rhs is 0.

Examples

Basic usage:

assert_eq!(U256::new(7).div_euclid(U256::new(4)), U256::new(1));

#[must_use = "this returns the result of the operation, \ without modifying the original"]pub fn rem_euclid(self, rhs: Self) -> Self[src]

Calculates the least remainder of self (mod rhs).

Since, for the positive integers, all common definitions of division are equal, this is exactly equal to self % rhs.

Panics

This function will panic if rhs is 0.

Examples

Basic usage:

assert_eq!(U256::new(7).rem_euclid(U256::new(4)), U256::new(3));

pub fn is_power_of_two(self) -> bool[src]

Returns true if and only if self == 2^k for some k.

Examples

Basic usage:

assert!(U256::new(16).is_power_of_two());
assert!(!U256::new(10).is_power_of_two());

pub fn next_power_of_two(self) -> Self[src]

Returns the smallest power of two greater than or equal to self.

When return value overflows (i.e., self > (1 << (N-1)) for type uN), it panics in debug mode and return value is wrapped to 0 in release mode (the only situation in which method can return 0).

Examples

Basic usage:

assert_eq!(U256::new(2).next_power_of_two(), U256::new(2));
assert_eq!(U256::new(3).next_power_of_two(), U256::new(4));

pub fn checked_next_power_of_two(self) -> Option<Self>[src]

Returns the smallest power of two greater than or equal to n. If the next power of two is greater than the type's maximum value, None is returned, otherwise the power of two is wrapped in Some.

Examples

Basic usage:

assert_eq!(U256::new(2).checked_next_power_of_two(), Some(U256::new(2)));
assert_eq!(U256::new(3).checked_next_power_of_two(), Some(U256::new(4)));
assert_eq!(U256::MAX.checked_next_power_of_two(), None);

pub fn to_be_bytes(self) -> [u8; 32][src]

Return the memory representation of this integer as a byte array in big endian (network) byte order.

Examples

let bytes = U256::from_words(
    0x00010203_04050607_08090a0b_0c0d0e0f,
    0x10111213_14151617_18191a1b_1c1d1e1f,
);
assert_eq!(
    bytes.to_be_bytes(),
    [
        0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
        0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
    ],
);

pub fn to_le_bytes(self) -> [u8; 32][src]

Return the memory representation of this integer as a byte array in little endian byte order.

Examples

let bytes = U256::from_words(
    0x00010203_04050607_08090a0b_0c0d0e0f,
    0x10111213_14151617_18191a1b_1c1d1e1f,
);
assert_eq!(
    bytes.to_le_bytes(),
    [
        0x1f, 0x1e, 0x1d, 0x1c, 0x1b, 0x1a, 0x19, 0x18, 0x17, 0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10,
        0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
    ],
);

pub fn to_ne_bytes(self) -> [u8; 32][src]

Return the memory representation of this integer as a byte array in native byte order.

As the target platform's native endianness is used, portable code should use to_be_bytes or to_le_bytes, as appropriate, instead.

Examples

let bytes = U256::from_words(
    0x00010203_04050607_08090a0b_0c0d0e0f,
    0x10111213_14151617_18191a1b_1c1d1e1f,
);
assert_eq!(
    bytes.to_ne_bytes(),
    if cfg!(target_endian = "big") {
        [
            0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
            0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
        ]
    } else {
        [
            0x1f, 0x1e, 0x1d, 0x1c, 0x1b, 0x1a, 0x19, 0x18, 0x17, 0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10,
            0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
        ]
    }
);

pub fn from_be_bytes(bytes: [u8; 32]) -> Self[src]

Create an integer value from its representation as a byte array in big endian.

Examples

let value = U256::from_be_bytes([
    0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
    0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
]);
assert_eq!(
    value,
    U256::from_words(
        0x00010203_04050607_08090a0b_0c0d0e0f,
        0x10111213_14151617_18191a1b_1c1d1e1f,
    ),
);

When starting from a slice rather than an array, fallible conversion APIs can be used:

use std::convert::TryInto;

fn read_be_U256(input: &mut &[u8]) -> U256 {
    let (int_bytes, rest) = input.split_at(std::mem::size_of::<U256>());
    *input = rest;
    U256::from_be_bytes(int_bytes.try_into().unwrap())
}

pub fn from_le_bytes(bytes: [u8; 32]) -> Self[src]

Create an integer value from its representation as a byte array in little endian.

Examples

let value = U256::from_le_bytes([
    0x1f, 0x1e, 0x1d, 0x1c, 0x1b, 0x1a, 0x19, 0x18, 0x17, 0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10,
    0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
]);
assert_eq!(
    value,
    U256::from_words(
        0x00010203_04050607_08090a0b_0c0d0e0f,
        0x10111213_14151617_18191a1b_1c1d1e1f,
    ),
);

When starting from a slice rather than an array, fallible conversion APIs can be used:

use std::convert::TryInto;

fn read_be_U256(input: &mut &[u8]) -> U256 {
    let (int_bytes, rest) = input.split_at(std::mem::size_of::<U256>());
    *input = rest;
    U256::from_le_bytes(int_bytes.try_into().unwrap())
}

pub fn from_ne_bytes(bytes: [u8; 32]) -> Self[src]

Create an integer value from its memory representation as a byte array in native endianness.

As the target platform's native endianness is used, portable code likely wants to use from_be_bytes or from_le_bytes, as appropriate instead.

Examples

let value = U256::from_ne_bytes(if cfg!(target_endian = "big") {
    [
        0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
        0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
    ]
} else {
    [
        0x1f, 0x1e, 0x1d, 0x1c, 0x1b, 0x1a, 0x19, 0x18, 0x17, 0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10,
        0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
    ]
});
assert_eq!(
    value,
    U256::from_words(
        0x00010203_04050607_08090a0b_0c0d0e0f,
        0x10111213_14151617_18191a1b_1c1d1e1f,
    ),
);

When starting from a slice rather than an array, fallible conversion APIs can be used:

use std::convert::TryInto;

fn read_be_U256(input: &mut &[u8]) -> U256 {
    let (int_bytes, rest) = input.split_at(std::mem::size_of::<U256>());
    *input = rest;
    U256::from_ne_bytes(int_bytes.try_into().unwrap())
}

impl U256[src]

pub const ZERO: Self[src]

The additive identity for this integer type, i.e. 0.

pub const ONE: Self[src]

The multiplicative identity for this integer type, i.e. 1.

pub const fn new(value: u128) -> Self[src]

Creates a new 256-bit integer value from a primitive u128 integer.

pub const fn from_words(hi: u128, lo: u128) -> Self[src]

Creates a new 256-bit integer value from high and low words.

pub const fn into_words(self) -> (u128, u128)[src]

Splits a 256-bit integer into high and low words.

pub fn low(&self) -> &u128[src]

Get the low 128-bit word for this unsigned integer.

pub fn low_mut(&mut self) -> &mut u128[src]

Get the low 128-bit word for this unsigned integer as a mutable reference.

pub fn high(&self) -> &u128[src]

Get the high 128-bit word for this unsigned integer.

pub fn high_mut(&mut self) -> &mut u128[src]

Get the high 128-bit word for this unsigned integer as a mutable reference.

pub const fn as_i8(self) -> i8[src]

Cast to a primitive i8.

pub const fn as_i16(self) -> i16[src]

Cast to a primitive i16.

pub const fn as_i32(self) -> i32[src]

Cast to a primitive i32.

pub const fn as_i64(self) -> i64[src]

Cast to a primitive i64.

pub const fn as_i128(self) -> i128[src]

Cast to a primitive i128.

pub const fn as_u8(self) -> u8[src]

Cast to a primitive u8.

pub const fn as_u16(self) -> u16[src]

Cast to a primitive u16.

pub const fn as_u32(self) -> u32[src]

Cast to a primitive u32.

pub const fn as_u64(self) -> u64[src]

Cast to a primitive u64.

pub const fn as_u128(self) -> u128[src]

Cast to a primitive u128.

pub const fn as_isize(self) -> isize[src]

Cast to a primitive isize.

pub const fn as_usize(self) -> usize[src]

Cast to a primitive usize.

pub const fn as_f32(self) -> f32[src]

Cast to a primitive f32.

pub fn as_f64(self) -> f64[src]

Cast to a primitive f64.

Trait Implementations

impl<'_, '_> Add<&'_ U256> for &'_ U256[src]

type Output = U256

The resulting type after applying the + operator.

impl<'_> Add<&'_ U256> for U256[src]

type Output = U256

The resulting type after applying the + operator.

impl<'_, '_> Add<&'_ u128> for &'_ U256[src]

type Output = U256

The resulting type after applying the + operator.

impl<'_> Add<&'_ u128> for U256[src]

type Output = U256

The resulting type after applying the + operator.

impl<'_> Add<U256> for &'_ U256[src]

type Output = U256

The resulting type after applying the + operator.

impl Add<U256> for U256[src]

type Output = U256

The resulting type after applying the + operator.

impl<'_> Add<u128> for &'_ U256[src]

type Output = U256

The resulting type after applying the + operator.

impl Add<u128> for U256[src]

type Output = U256

The resulting type after applying the + operator.

impl<'_> AddAssign<&'_ U256> for U256[src]

impl<'_> AddAssign<&'_ u128> for U256[src]

impl AddAssign<U256> for U256[src]

impl AddAssign<u128> for U256[src]

impl AsU256 for U256[src]

impl Binary for U256[src]

impl<'_, '_> BitAnd<&'_ U256> for &'_ U256[src]

type Output = U256

The resulting type after applying the & operator.

impl<'_> BitAnd<&'_ U256> for U256[src]

type Output = U256

The resulting type after applying the & operator.

impl<'_, '_> BitAnd<&'_ u128> for &'_ U256[src]

type Output = U256

The resulting type after applying the & operator.

impl<'_> BitAnd<&'_ u128> for U256[src]

type Output = U256

The resulting type after applying the & operator.

impl<'_> BitAnd<U256> for &'_ U256[src]

type Output = U256

The resulting type after applying the & operator.

impl BitAnd<U256> for U256[src]

type Output = U256

The resulting type after applying the & operator.

impl<'_> BitAnd<u128> for &'_ U256[src]

type Output = U256

The resulting type after applying the & operator.

impl BitAnd<u128> for U256[src]

type Output = U256

The resulting type after applying the & operator.

impl<'_> BitAndAssign<&'_ U256> for U256[src]

impl<'_> BitAndAssign<&'_ u128> for U256[src]

impl BitAndAssign<U256> for U256[src]

impl BitAndAssign<u128> for U256[src]

impl<'_, '_> BitOr<&'_ U256> for &'_ U256[src]

type Output = U256

The resulting type after applying the | operator.

impl<'_> BitOr<&'_ U256> for U256[src]

type Output = U256

The resulting type after applying the | operator.

impl<'_, '_> BitOr<&'_ u128> for &'_ U256[src]

type Output = U256

The resulting type after applying the | operator.

impl<'_> BitOr<&'_ u128> for U256[src]

type Output = U256

The resulting type after applying the | operator.

impl<'_> BitOr<U256> for &'_ U256[src]

type Output = U256

The resulting type after applying the | operator.

impl BitOr<U256> for U256[src]

type Output = U256

The resulting type after applying the | operator.

impl<'_> BitOr<u128> for &'_ U256[src]

type Output = U256

The resulting type after applying the | operator.

impl BitOr<u128> for U256[src]

type Output = U256

The resulting type after applying the | operator.

impl<'_> BitOrAssign<&'_ U256> for U256[src]

impl<'_> BitOrAssign<&'_ u128> for U256[src]

impl BitOrAssign<U256> for U256[src]

impl BitOrAssign<u128> for U256[src]

impl<'_, '_> BitXor<&'_ U256> for &'_ U256[src]

type Output = U256

The resulting type after applying the ^ operator.

impl<'_> BitXor<&'_ U256> for U256[src]

type Output = U256

The resulting type after applying the ^ operator.

impl<'_, '_> BitXor<&'_ u128> for &'_ U256[src]

type Output = U256

The resulting type after applying the ^ operator.

impl<'_> BitXor<&'_ u128> for U256[src]

type Output = U256

The resulting type after applying the ^ operator.

impl<'_> BitXor<U256> for &'_ U256[src]

type Output = U256

The resulting type after applying the ^ operator.

impl BitXor<U256> for U256[src]

type Output = U256

The resulting type after applying the ^ operator.

impl<'_> BitXor<u128> for &'_ U256[src]

type Output = U256

The resulting type after applying the ^ operator.

impl BitXor<u128> for U256[src]

type Output = U256

The resulting type after applying the ^ operator.

impl<'_> BitXorAssign<&'_ U256> for U256[src]

impl<'_> BitXorAssign<&'_ u128> for U256[src]

impl BitXorAssign<U256> for U256[src]

impl BitXorAssign<u128> for U256[src]

impl Clone for U256[src]

impl Copy for U256[src]

impl Debug for U256[src]

impl Default for U256[src]

impl Display for U256[src]

impl<'_> Div<&'_ U256> for &'_ U256[src]

type Output = U256

The resulting type after applying the / operator.

impl<'_> Div<&'_ U256> for U256[src]

type Output = U256

The resulting type after applying the / operator.

impl<'_, '_> Div<&'_ u128> for &'_ U256[src]

type Output = U256

The resulting type after applying the / operator.

impl<'_> Div<&'_ u128> for U256[src]

type Output = U256

The resulting type after applying the / operator.

impl<'_> Div<U256> for &'_ U256[src]

type Output = U256

The resulting type after applying the / operator.

impl Div<U256> for U256[src]

type Output = U256

The resulting type after applying the / operator.

impl<'_> Div<u128> for &'_ U256[src]

type Output = U256

The resulting type after applying the / operator.

impl Div<u128> for U256[src]

type Output = U256

The resulting type after applying the / operator.

impl<'_> DivAssign<&'_ U256> for U256[src]

impl<'_> DivAssign<&'_ u128> for U256[src]

impl DivAssign<U256> for U256[src]

impl DivAssign<u128> for U256[src]

impl Eq for U256[src]

impl From<bool> for U256[src]

impl From<u128> for U256[src]

impl From<u16> for U256[src]

impl From<u32> for U256[src]

impl From<u64> for U256[src]

impl From<u8> for U256[src]

impl FromStr for U256[src]

type Err = ParseIntError

The associated error which can be returned from parsing.

impl Hash for U256[src]

impl Into<f32> for U256[src]

impl Into<f64> for U256[src]

impl LowerExp for U256[src]

impl LowerHex for U256[src]

impl<'_, '_> Mul<&'_ U256> for &'_ U256[src]

type Output = U256

The resulting type after applying the * operator.

impl<'_> Mul<&'_ U256> for U256[src]

type Output = U256

The resulting type after applying the * operator.

impl<'_, '_> Mul<&'_ u128> for &'_ U256[src]

type Output = U256

The resulting type after applying the * operator.

impl<'_> Mul<&'_ u128> for U256[src]

type Output = U256

The resulting type after applying the * operator.

impl<'_> Mul<U256> for &'_ U256[src]

type Output = U256

The resulting type after applying the * operator.

impl Mul<U256> for U256[src]

type Output = U256

The resulting type after applying the * operator.

impl<'_> Mul<u128> for &'_ U256[src]

type Output = U256

The resulting type after applying the * operator.

impl Mul<u128> for U256[src]

type Output = U256

The resulting type after applying the * operator.

impl<'_> MulAssign<&'_ U256> for U256[src]

impl<'_> MulAssign<&'_ u128> for U256[src]

impl MulAssign<U256> for U256[src]

impl MulAssign<u128> for U256[src]

impl Not for U256[src]

type Output = U256

The resulting type after applying the ! operator.

impl<'_> Not for &'_ U256[src]

type Output = U256

The resulting type after applying the ! operator.

impl Octal for U256[src]

impl Ord for U256[src]

impl PartialEq<U256> for U256[src]

impl PartialEq<u128> for U256[src]

impl PartialOrd<U256> for U256[src]

impl PartialOrd<u128> for U256[src]

impl<'a> Product<&'a U256> for U256[src]

impl Product<U256> for U256[src]

impl<'_> Rem<&'_ U256> for &'_ U256[src]

type Output = U256

The resulting type after applying the % operator.

impl<'_> Rem<&'_ U256> for U256[src]

type Output = U256

The resulting type after applying the % operator.

impl<'_, '_> Rem<&'_ u128> for &'_ U256[src]

type Output = U256

The resulting type after applying the % operator.

impl<'_> Rem<&'_ u128> for U256[src]

type Output = U256

The resulting type after applying the % operator.

impl<'_> Rem<U256> for &'_ U256[src]

type Output = U256

The resulting type after applying the % operator.

impl Rem<U256> for U256[src]

type Output = U256

The resulting type after applying the % operator.

impl<'_> Rem<u128> for &'_ U256[src]

type Output = U256

The resulting type after applying the % operator.

impl Rem<u128> for U256[src]

type Output = U256

The resulting type after applying the % operator.

impl<'_> RemAssign<&'_ U256> for U256[src]

impl<'_> RemAssign<&'_ u128> for U256[src]

impl RemAssign<U256> for U256[src]

impl RemAssign<u128> for U256[src]

impl<'_, '_> Shl<&'_ U256> for &'_ U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_> Shl<&'_ U256> for U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_, '_> Shl<&'_ i128> for &'_ U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_> Shl<&'_ i128> for U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_, '_> Shl<&'_ i16> for &'_ U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_> Shl<&'_ i16> for U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_, '_> Shl<&'_ i32> for &'_ U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_> Shl<&'_ i32> for U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_, '_> Shl<&'_ i64> for &'_ U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_> Shl<&'_ i64> for U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_, '_> Shl<&'_ i8> for &'_ U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_> Shl<&'_ i8> for U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_, '_> Shl<&'_ isize> for &'_ U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_> Shl<&'_ isize> for U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_, '_> Shl<&'_ u128> for &'_ U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_> Shl<&'_ u128> for U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_, '_> Shl<&'_ u16> for &'_ U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_> Shl<&'_ u16> for U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_, '_> Shl<&'_ u32> for &'_ U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_> Shl<&'_ u32> for U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_, '_> Shl<&'_ u64> for &'_ U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_> Shl<&'_ u64> for U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_, '_> Shl<&'_ u8> for &'_ U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_> Shl<&'_ u8> for U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_, '_> Shl<&'_ usize> for &'_ U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_> Shl<&'_ usize> for U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_> Shl<U256> for &'_ U256[src]

type Output = U256

The resulting type after applying the << operator.

impl Shl<U256> for U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_> Shl<i128> for &'_ U256[src]

type Output = U256

The resulting type after applying the << operator.

impl Shl<i128> for U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_> Shl<i16> for &'_ U256[src]

type Output = U256

The resulting type after applying the << operator.

impl Shl<i16> for U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_> Shl<i32> for &'_ U256[src]

type Output = U256

The resulting type after applying the << operator.

impl Shl<i32> for U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_> Shl<i64> for &'_ U256[src]

type Output = U256

The resulting type after applying the << operator.

impl Shl<i64> for U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_> Shl<i8> for &'_ U256[src]

type Output = U256

The resulting type after applying the << operator.

impl Shl<i8> for U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_> Shl<isize> for &'_ U256[src]

type Output = U256

The resulting type after applying the << operator.

impl Shl<isize> for U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_> Shl<u128> for &'_ U256[src]

type Output = U256

The resulting type after applying the << operator.

impl Shl<u128> for U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_> Shl<u16> for &'_ U256[src]

type Output = U256

The resulting type after applying the << operator.

impl Shl<u16> for U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_> Shl<u32> for &'_ U256[src]

type Output = U256

The resulting type after applying the << operator.

impl Shl<u32> for U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_> Shl<u64> for &'_ U256[src]

type Output = U256

The resulting type after applying the << operator.

impl Shl<u64> for U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_> Shl<u8> for &'_ U256[src]

type Output = U256

The resulting type after applying the << operator.

impl Shl<u8> for U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_> Shl<usize> for &'_ U256[src]

type Output = U256

The resulting type after applying the << operator.

impl Shl<usize> for U256[src]

type Output = U256

The resulting type after applying the << operator.

impl<'_> ShlAssign<&'_ U256> for U256[src]

impl<'_> ShlAssign<&'_ i128> for U256[src]

impl<'_> ShlAssign<&'_ i16> for U256[src]

impl<'_> ShlAssign<&'_ i32> for U256[src]

impl<'_> ShlAssign<&'_ i64> for U256[src]

impl<'_> ShlAssign<&'_ i8> for U256[src]

impl<'_> ShlAssign<&'_ isize> for U256[src]

impl<'_> ShlAssign<&'_ u128> for U256[src]

impl<'_> ShlAssign<&'_ u16> for U256[src]

impl<'_> ShlAssign<&'_ u32> for U256[src]

impl<'_> ShlAssign<&'_ u64> for U256[src]

impl<'_> ShlAssign<&'_ u8> for U256[src]

impl<'_> ShlAssign<&'_ usize> for U256[src]

impl ShlAssign<U256> for U256[src]

impl ShlAssign<i128> for U256[src]

impl ShlAssign<i16> for U256[src]

impl ShlAssign<i32> for U256[src]

impl ShlAssign<i64> for U256[src]

impl ShlAssign<i8> for U256[src]

impl ShlAssign<isize> for U256[src]

impl ShlAssign<u128> for U256[src]

impl ShlAssign<u16> for U256[src]

impl ShlAssign<u32> for U256[src]

impl ShlAssign<u64> for U256[src]

impl ShlAssign<u8> for U256[src]

impl ShlAssign<usize> for U256[src]

impl<'_, '_> Shr<&'_ U256> for &'_ U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_> Shr<&'_ U256> for U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_, '_> Shr<&'_ i128> for &'_ U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_> Shr<&'_ i128> for U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_, '_> Shr<&'_ i16> for &'_ U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_> Shr<&'_ i16> for U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_, '_> Shr<&'_ i32> for &'_ U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_> Shr<&'_ i32> for U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_, '_> Shr<&'_ i64> for &'_ U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_> Shr<&'_ i64> for U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_, '_> Shr<&'_ i8> for &'_ U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_> Shr<&'_ i8> for U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_, '_> Shr<&'_ isize> for &'_ U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_> Shr<&'_ isize> for U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_, '_> Shr<&'_ u128> for &'_ U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_> Shr<&'_ u128> for U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_, '_> Shr<&'_ u16> for &'_ U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_> Shr<&'_ u16> for U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_, '_> Shr<&'_ u32> for &'_ U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_> Shr<&'_ u32> for U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_, '_> Shr<&'_ u64> for &'_ U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_> Shr<&'_ u64> for U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_, '_> Shr<&'_ u8> for &'_ U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_> Shr<&'_ u8> for U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_, '_> Shr<&'_ usize> for &'_ U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_> Shr<&'_ usize> for U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_> Shr<U256> for &'_ U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl Shr<U256> for U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_> Shr<i128> for &'_ U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl Shr<i128> for U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_> Shr<i16> for &'_ U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl Shr<i16> for U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_> Shr<i32> for &'_ U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl Shr<i32> for U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_> Shr<i64> for &'_ U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl Shr<i64> for U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_> Shr<i8> for &'_ U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl Shr<i8> for U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_> Shr<isize> for &'_ U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl Shr<isize> for U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_> Shr<u128> for &'_ U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl Shr<u128> for U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_> Shr<u16> for &'_ U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl Shr<u16> for U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_> Shr<u32> for &'_ U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl Shr<u32> for U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_> Shr<u64> for &'_ U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl Shr<u64> for U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_> Shr<u8> for &'_ U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl Shr<u8> for U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_> Shr<usize> for &'_ U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl Shr<usize> for U256[src]

type Output = U256

The resulting type after applying the >> operator.

impl<'_> ShrAssign<&'_ U256> for U256[src]

impl<'_> ShrAssign<&'_ i128> for U256[src]

impl<'_> ShrAssign<&'_ i16> for U256[src]

impl<'_> ShrAssign<&'_ i32> for U256[src]

impl<'_> ShrAssign<&'_ i64> for U256[src]

impl<'_> ShrAssign<&'_ i8> for U256[src]

impl<'_> ShrAssign<&'_ isize> for U256[src]

impl<'_> ShrAssign<&'_ u128> for U256[src]

impl<'_> ShrAssign<&'_ u16> for U256[src]

impl<'_> ShrAssign<&'_ u32> for U256[src]

impl<'_> ShrAssign<&'_ u64> for U256[src]

impl<'_> ShrAssign<&'_ u8> for U256[src]

impl<'_> ShrAssign<&'_ usize> for U256[src]

impl ShrAssign<U256> for U256[src]

impl ShrAssign<i128> for U256[src]

impl ShrAssign<i16> for U256[src]

impl ShrAssign<i32> for U256[src]

impl ShrAssign<i64> for U256[src]

impl ShrAssign<i8> for U256[src]

impl ShrAssign<isize> for U256[src]

impl ShrAssign<u128> for U256[src]

impl ShrAssign<u16> for U256[src]

impl ShrAssign<u32> for U256[src]

impl ShrAssign<u64> for U256[src]

impl ShrAssign<u8> for U256[src]

impl ShrAssign<usize> for U256[src]

impl StructuralEq for U256[src]

impl StructuralPartialEq for U256[src]

impl<'_, '_> Sub<&'_ U256> for &'_ U256[src]

type Output = U256

The resulting type after applying the - operator.

impl<'_> Sub<&'_ U256> for U256[src]

type Output = U256

The resulting type after applying the - operator.

impl<'_, '_> Sub<&'_ u128> for &'_ U256[src]

type Output = U256

The resulting type after applying the - operator.

impl<'_> Sub<&'_ u128> for U256[src]

type Output = U256

The resulting type after applying the - operator.

impl<'_> Sub<U256> for &'_ U256[src]

type Output = U256

The resulting type after applying the - operator.

impl Sub<U256> for U256[src]

type Output = U256

The resulting type after applying the - operator.

impl<'_> Sub<u128> for &'_ U256[src]

type Output = U256

The resulting type after applying the - operator.

impl Sub<u128> for U256[src]

type Output = U256

The resulting type after applying the - operator.

impl<'_> SubAssign<&'_ U256> for U256[src]

impl<'_> SubAssign<&'_ u128> for U256[src]

impl SubAssign<U256> for U256[src]

impl SubAssign<u128> for U256[src]

impl<'a> Sum<&'a U256> for U256[src]

impl Sum<U256> for U256[src]

impl TryFrom<i128> for U256[src]

type Error = TryFromIntError

The type returned in the event of a conversion error.

impl TryFrom<i16> for U256[src]

type Error = TryFromIntError

The type returned in the event of a conversion error.

impl TryFrom<i32> for U256[src]

type Error = TryFromIntError

The type returned in the event of a conversion error.

impl TryFrom<i64> for U256[src]

type Error = TryFromIntError

The type returned in the event of a conversion error.

impl TryFrom<i8> for U256[src]

type Error = TryFromIntError

The type returned in the event of a conversion error.

impl TryFrom<isize> for U256[src]

type Error = TryFromIntError

The type returned in the event of a conversion error.

impl TryFrom<usize> for U256[src]

type Error = TryFromIntError

The type returned in the event of a conversion error.

impl TryInto<i128> for U256[src]

type Error = TryFromIntError

The type returned in the event of a conversion error.

impl TryInto<i16> for U256[src]

type Error = TryFromIntError

The type returned in the event of a conversion error.

impl TryInto<i32> for U256[src]

type Error = TryFromIntError

The type returned in the event of a conversion error.

impl TryInto<i64> for U256[src]

type Error = TryFromIntError

The type returned in the event of a conversion error.

impl TryInto<i8> for U256[src]

type Error = TryFromIntError

The type returned in the event of a conversion error.

impl TryInto<isize> for U256[src]

type Error = TryFromIntError

The type returned in the event of a conversion error.

impl TryInto<u128> for U256[src]

type Error = TryFromIntError

The type returned in the event of a conversion error.

impl TryInto<u16> for U256[src]

type Error = TryFromIntError

The type returned in the event of a conversion error.

impl TryInto<u32> for U256[src]

type Error = TryFromIntError

The type returned in the event of a conversion error.

impl TryInto<u64> for U256[src]

type Error = TryFromIntError

The type returned in the event of a conversion error.

impl TryInto<u8> for U256[src]

type Error = TryFromIntError

The type returned in the event of a conversion error.

impl TryInto<usize> for U256[src]

type Error = TryFromIntError

The type returned in the event of a conversion error.

impl UpperExp for U256[src]

impl UpperHex for U256[src]

Auto Trait Implementations

impl Send for U256

impl Sync for U256

impl Unpin for U256

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.