1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
use super::super::*;

use arrayvec::ArrayVec;
use std::slice::from_raw_parts;

/// Module containing ICMPv6 related types and constants
pub mod icmpv6 {

    /// The maximum number of bytes/octets the ICMPv6 part of a packet can contain.
    ///
    /// The value is determined by the maximum value of the "Upper-Layer Packet Length"
    /// field. This field is not directly part of the packet but used during the checksum
    /// calculation in the pseudo header.
    ///
    /// The "Upper-Layer Packet Length" is represented as an `u32` and defined as
    /// "...the Payload Length from the IPv6 header, minus the length of any
    /// extension headers present between the IPv6 header and the upper-layer
    /// header" (according to RFC 2460 Section 8.1). In other words, the length of the
    /// ICMPv6 part of the packet.
    ///
    /// Therefor the maximum size of an ICMPv6 packet is `u32::MAX`.
    pub const MAX_ICMPV6_BYTE_LEN: usize = u32::MAX as usize;

    /// ICMPv6 type value indicating a "Destination Unreachable" message.
    pub const TYPE_DST_UNREACH: u8 = 1;

    /// ICMPv6 type value indicating a "Packet Too Big" message.
    pub const TYPE_PACKET_TOO_BIG: u8 = 2;

    /// ICMPv6 type value indicating a "Time Exceeded" message.
    pub const TYPE_TIME_EXCEEDED: u8 = 3;

    /// ICMPv6 type value indicating a "Parameter Problem" message.
    pub const TYPE_PARAMETER_PROBLEM: u8 = 4;

    /// ICMPv6 type value indicating an "Echo Request" message.
    pub const TYPE_ECHO_REQUEST: u8 = 128;

    /// ICMPv6 type value indicating an "Echo Reply" message.
    pub const TYPE_ECHO_REPLY: u8 = 129;

    /// ICMPv6 type value indicating a "Multicast Listener Query" message.
    pub const TYPE_MULTICAST_LISTENER_QUERY: u8 = 130;

    /// ICMPv6 type value indicating a "Multicast Listener Report" message.
    pub const TYPE_MULTICAST_LISTENER_REPORT: u8 = 131;

    /// ICMPv6 type value indicating a "Multicast Listener Done" message.
    pub const TYPE_MULTICAST_LISTENER_REDUCTION: u8 = 132;

    /// ICMPv6 type value indicating a "Router Solicitation" message.
    pub const TYPE_ROUTER_SOLICITATION: u8 = 133;

    /// ICMPv6 type value indicating a "Router Advertisement" message.
    pub const TYPE_ROUTER_ADVERTISEMENT: u8 = 134;

    /// ICMPv6 type value indicating a "Neighbor Solicitation" message.
    pub const TYPE_NEIGHBOR_SOLICITATION: u8 = 135;

    /// ICMPv6 type value indicating a "Neighbor Advertisement" message.
    pub const TYPE_NEIGHBOR_ADVERTISEMENT: u8 = 136;

    /// ICMPv6 type value indicating a "Redirect Message" message.
    pub const TYPE_REDIRECT_MESSAGE: u8 = 137;

    /// ICMPv6 type value indicating a "Router Renumbering" message.
    pub const TYPE_ROUTER_RENUMBERING: u8 = 138;

    /// ICMPv6 type value indicating a "Inverse Neighbor Discovery Solicitation" message.
    pub const TYPE_INVERSE_NEIGHBOR_DISCOVERY_SOLICITATION: u8 = 141;

    /// ICMPv6 type value indicating a "Inverse Neighbor Discovery Advertisement" message.
    pub const TYPE_INVERSE_NEIGHBOR_DISCOVERY_ADVERTISEMENT: u8 = 142;

    /// ICMPv6 type value indicating a "Extended Echo Request" message.
    pub const TYPE_EXT_ECHO_REQUEST: u8 = 160;

    /// ICMPv6 type value indicating a "Extended Echo Reply" message.
    pub const TYPE_EXT_ECHO_REPLY: u8 = 161;

    /// ICMPv6 destination unreachable code for "no route to destination".
    pub const CODE_DST_UNREACH_NO_ROUTE: u8 = 0;

    /// ICMPv6 destination unreachable code for "communication with
    /// destination administratively prohibited".
    pub const CODE_DST_UNREACH_PROHIBITED: u8 = 1;

    /// ICMPv6 destination unreachable code for "beyond scope of source address".
    pub const CODE_DST_UNREACH_BEYOND_SCOPE: u8 = 2;

    /// ICMPv6 destination unreachable code for "address unreachable".
    pub const CODE_DST_UNREACH_ADDR: u8 = 3;

    /// ICMPv6 destination unreachable code for "port unreachable".
    pub const CODE_DST_UNREACH_PORT: u8 = 4;

    /// ICMPv6 destination unreachable code for "source address failed ingress/egress policy".
    pub const CODE_DST_UNREACH_SOURCE_ADDRESS_FAILED_POLICY: u8 = 5;

    /// ICMPv6 destination unreachable code for "reject route to destination".
    pub const CODE_DST_UNREACH_REJECT_ROUTE_TO_DEST: u8 = 6;

    /// "Destination Unreachable" ICMPv6 code containing a reason why a
    /// destination could not be reached.
    ///
    /// # RFC 4443 Description:
    ///
    /// A Destination Unreachable message SHOULD be generated by a router, or
    /// by the IPv6 layer in the originating node, in response to a packet
    /// that cannot be delivered to its destination address for reasons other
    /// than congestion.  (An ICMPv6 message MUST NOT be generated if a
    /// packet is dropped due to congestion.)
    #[derive(Clone, Copy, Debug, PartialEq, Eq)]
    pub enum DestUnreachableCode {
        /// No route to destination
        NoRoute = 0,
        /// Communication with destination administratively prohibited
        Prohibited = 1,
        /// Beyond scope of source address
        BeyondScope = 2,
        /// Address unreachable
        Address = 3,
        /// Port unreachable
        Port = 4,
        /// Source address failed ingress/egress policy
        SourceAddressFailedPolicy = 5,
        /// Reject route to destination
        RejectRoute = 6,
    }

    impl DestUnreachableCode {
        /// Converts the u8 code value from an ICMPv6 "destination unreachable"
        /// packet to an `icmpv6::DestUnreachableCode` enum.
        ///
        /// # Example Usage:
        ///
        /// ```
        /// use etherparse::{icmpv6, icmpv6::DestUnreachableCode};
        /// let icmp_packet: [u8;8] = [
        ///     icmpv6::TYPE_DST_UNREACH, icmpv6::CODE_DST_UNREACH_PORT, 0, 0,
        ///     0, 0, 0, 0,
        /// ];
        ///
        /// if icmpv6::TYPE_DST_UNREACH == icmp_packet[0] {
        ///     let dst = icmpv6::DestUnreachableCode::from_u8(
        ///         icmp_packet[1]
        ///     );
        ///     assert_eq!(dst, Some(icmpv6::DestUnreachableCode::Port));
        /// }
        /// ```
        pub fn from_u8(code_u8: u8) -> Option<DestUnreachableCode> {
            use DestUnreachableCode::*;
            match code_u8 {
                CODE_DST_UNREACH_NO_ROUTE => Some(NoRoute),
                CODE_DST_UNREACH_PROHIBITED => Some(Prohibited),
                CODE_DST_UNREACH_BEYOND_SCOPE => Some(BeyondScope),
                CODE_DST_UNREACH_ADDR => Some(Address),
                CODE_DST_UNREACH_PORT => Some(Port),
                CODE_DST_UNREACH_SOURCE_ADDRESS_FAILED_POLICY => Some(SourceAddressFailedPolicy),
                CODE_DST_UNREACH_REJECT_ROUTE_TO_DEST => Some(RejectRoute),
                _ => None,
            }
        }

        /// Returns the code value of the destination unreachable packet.
        ///
        /// This is the second byte of an ICMPv6 packet.
        #[inline]
        pub fn code_u8(&self) -> u8 {
            *self as u8
        }
    }

    /// ICMPv6 time exceeded code for "hop limit exceeded in transit"
    pub const CODE_TIME_EXCEEDED_HOP_LIMIT_EXCEEDED: u8 = 0;

    /// ICMPv6 time exceeded code for "fragment reassembly time exceeded"
    pub const CODE_TIME_EXCEEDED_FRAGMENT_REASSEMBLY_TIME_EXCEEDED: u8 = 1;

    /// Code values for ICMPv6 time exceeded message.
    #[derive(Clone, Copy, Debug, PartialEq, Eq)]
    pub enum TimeExceededCode {
        /// "hop limit exceeded in transit"
        HopLimitExceeded = 0,
        /// "fragment reassembly time exceeded"
        FragmentReassemblyTimeExceeded = 1,
    }

    impl TimeExceededCode {

        /// Tries to convert a code [`u8`] value to a [`TimeExceededCode`] value.
        ///
        /// Returns [`None`] in case the code value is not known as a time exceeded code.
        #[inline]
        pub fn from_u8(code_u8: u8) -> Option<TimeExceededCode> {
            use TimeExceededCode::*;
            match code_u8 {
                CODE_TIME_EXCEEDED_HOP_LIMIT_EXCEEDED => Some(HopLimitExceeded),
                CODE_TIME_EXCEEDED_FRAGMENT_REASSEMBLY_TIME_EXCEEDED => {
                    Some(FragmentReassemblyTimeExceeded)
                }
                _ => None,
            }
        }

        /// Returns the [`u8`] value of the code.
        #[inline]
        pub fn code_u8(&self) -> u8 {
            *self as u8
        }
    }

    /// ICMPv6 parameter problem code for "erroneous header field encountered" (from [RFC 4443](https://tools.ietf.org/html/rfc4443)).
    pub const CODE_PARAM_PROBLEM_ERR_HEADER_FIELD: u8 = 0;

    /// ICMPv6 parameter problem code for "unrecognized Next Header type encountered" (from [RFC 4443](https://tools.ietf.org/html/rfc4443)).
    pub const CODE_PARAM_PROBLEM_UNRECOG_NEXT_HEADER: u8 = 1;

    /// ICMPv6 parameter problem code for "unrecognized IPv6 option encountered" (from [RFC 4443](https://tools.ietf.org/html/rfc4443)).
    pub const CODE_PARAM_PROBLEM_UNRECOG_IPV6_OPTION: u8 = 2;

    /// ICMPv6 parameter problem code for "IPv6 First Fragment has incomplete IPv6 Header Chain" (from [RFC 7112](https://tools.ietf.org/html/rfc7112)).
    pub const CODE_PARAM_PROBLEM_IPV6_FIRST_FRAG_INCOMP_HEADER_CHAIN: u8 = 3;

    /// ICMPv6 parameter problem code for "SR Upper-layer Header Error" (from [RFC 8754](https://tools.ietf.org/html/rfc8754)).
    pub const CODE_PARAM_PROBLEM_SR_UPPER_LAYER_HEADER_ERROR: u8 = 4;

    /// ICMPv6 parameter problem code for "Unrecognized Next Header type encountered by intermediate node" (from [RFC 8883](https://tools.ietf.org/html/rfc8883)).
    pub const CODE_PARAM_PROBLEM_UNRECOG_NEXT_HEADER_BY_INTERMEDIATE_NODE: u8 = 5;

    /// ICMPv6 parameter problem code for "Extension header too big" (from [RFC 8883](https://tools.ietf.org/html/rfc8883)).
    pub const CODE_PARAM_PROBLEM_EXT_HEADER_TOO_BIG: u8 = 6;

    /// ICMPv6 parameter problem code for "Extension header chain too long" (from [RFC 8883](https://tools.ietf.org/html/rfc8883)).
    pub const CODE_PARAM_PROBLEM_EXT_HEADER_CHAIN_TOO_LONG: u8 = 7;

    /// ICMPv6 parameter problem code for "Too many extension headers" (from [RFC 8883](https://tools.ietf.org/html/rfc8883)).
    pub const CODE_PARAM_PROBLEM_TOO_MANY_EXT_HEADERS: u8 = 8;

    /// ICMPv6 parameter problem code for "Too many options in extension header" (from [RFC 8883](https://tools.ietf.org/html/rfc8883)).
    pub const CODE_PARAM_PROBLEM_TOO_MANY_OPTIONS_EXT_HEADER: u8 = 9;

    /// ICMPv6 parameter problem code for "Option too big" (from [RFC 8883](https://tools.ietf.org/html/rfc8883)).
    pub const CODE_PARAM_PROBLEM_OPTION_TOO_BIG: u8 = 10;

    /// Code values for ICMPv6 parameter problem messages.
    ///
    /// Source: <https://www.iana.org/assignments/icmpv6-parameters/icmpv6-parameters.xhtml#icmpv6-parameters-codes-5>
    #[derive(Clone, Copy, Debug, PartialEq, Eq)]
    pub enum ParameterProblemCode {
        /// Erroneous header field encountered (from [RFC 4443](https://tools.ietf.org/html/rfc4443))
        ErroneousHeaderField = 0,
        /// Unrecognized Next Header type encountered (from [RFC 4443](https://tools.ietf.org/html/rfc4443))
        UnrecognizedNextHeader = 1,
        /// Unrecognized IPv6 option encountered (from [RFC 4443](https://tools.ietf.org/html/rfc4443))
        UnrecognizedIpv6Option = 2,
        /// IPv6 First Fragment has incomplete IPv6 Header Chain (from [RFC 7112](https://tools.ietf.org/html/rfc7112))
        Ipv6FirstFragmentIncompleteHeaderChain = 3,
        /// SR Upper-layer Header Error (from [RFC 8754](https://tools.ietf.org/html/rfc8754)).
        SrUpperLayerHeaderError = 4,
        /// Unrecognized Next Header type encountered by intermediate node (from [RFC 8883](https://tools.ietf.org/html/rfc8883))
        UnrecognizedNextHeaderByIntermediateNode = 5,
        /// Extension header too big (from [RFC 8883](https://tools.ietf.org/html/rfc8883))
        ExtensionHeaderTooBig = 6,
        /// Extension header chain too long (from [RFC 8883](https://tools.ietf.org/html/rfc8883))
        ExtensionHeaderChainTooLong = 7,
        /// Too many extension headers (from [RFC 8883](https://tools.ietf.org/html/rfc8883))
        TooManyExtensionHeaders = 8,
        /// Too many options in extension header (from [RFC 8883](https://tools.ietf.org/html/rfc8883))
        TooManyOptionsInExtensionHeader = 9,
        /// Option too big (from [RFC 8883](https://tools.ietf.org/html/rfc8883))
        OptionTooBig = 10,
    }

    impl ParameterProblemCode {

        /// Tries to convert a code [`u8`] value to a [`ParameterProblemCode`] value.
        ///
        /// Returns [`None`] in case the code value is not known as a parameter problem code.
        pub fn from_u8(code_u8: u8) -> Option<ParameterProblemCode> {
            use ParameterProblemCode::*;
            match code_u8 {
                CODE_PARAM_PROBLEM_ERR_HEADER_FIELD => Some(ErroneousHeaderField),
                CODE_PARAM_PROBLEM_UNRECOG_NEXT_HEADER => Some(UnrecognizedNextHeader),
                CODE_PARAM_PROBLEM_UNRECOG_IPV6_OPTION => Some(UnrecognizedIpv6Option),
                CODE_PARAM_PROBLEM_IPV6_FIRST_FRAG_INCOMP_HEADER_CHAIN => {
                    Some(Ipv6FirstFragmentIncompleteHeaderChain)
                }
                CODE_PARAM_PROBLEM_SR_UPPER_LAYER_HEADER_ERROR => Some(SrUpperLayerHeaderError),
                CODE_PARAM_PROBLEM_UNRECOG_NEXT_HEADER_BY_INTERMEDIATE_NODE => {
                    Some(UnrecognizedNextHeaderByIntermediateNode)
                }
                CODE_PARAM_PROBLEM_EXT_HEADER_TOO_BIG => Some(ExtensionHeaderTooBig),
                CODE_PARAM_PROBLEM_EXT_HEADER_CHAIN_TOO_LONG => Some(ExtensionHeaderChainTooLong),
                CODE_PARAM_PROBLEM_TOO_MANY_EXT_HEADERS => Some(TooManyExtensionHeaders),
                CODE_PARAM_PROBLEM_TOO_MANY_OPTIONS_EXT_HEADER => Some(TooManyOptionsInExtensionHeader),
                CODE_PARAM_PROBLEM_OPTION_TOO_BIG => Some(OptionTooBig),
                _ => None,
            }
        }

        /// Returns the [`u8`] value of the code.
        #[inline]
        pub fn code_u8(&self) -> u8 {
            *self as u8
        }
    }

    /// ICMPv6 parameter problem header.
    #[derive(Clone, Copy, Debug, PartialEq, Eq)]
    pub struct ParameterProblemHeader {
        /// The code can offer additional informations about what kind of parameter
        /// problem caused the error.
        pub code: ParameterProblemCode,
        /// Identifies the octet offset within the
        /// invoking packet where the error was detected.
        ///
        /// The pointer will point beyond the end of the ICMPv6
        /// packet if the field in error is beyond what can fit
        /// in the maximum size of an ICMPv6 error message.
        pub pointer: u32,
    }

} // mod icmpv6

use icmpv6::*;

/// Different kinds of ICMPv6 messages.
///
/// The data stored in this enum corresponds to the statically sized data
/// at the start of an ICMPv6 packet without the checksum. If you also need
/// the checksum you can package and [`Icmpv6Type`] value in an [`Icmpv6Header`]
/// struct.
///
/// # Decoding Example (complete packet):
///
/// ```
/// # use etherparse::{PacketBuilder};
/// # let mut builder = PacketBuilder::
/// #   ethernet2([0;6], [0;6])
/// #   .ipv6([0;16], [0;16], 20)
/// #   .icmpv6_echo_request(1, 2);
/// # let payload = [1,2,3,4];
/// # let mut packet = Vec::<u8>::with_capacity(builder.size(payload.len()));
/// # builder.write(&mut packet, &payload);
/// use etherparse::PacketHeaders;
///
/// let headers = PacketHeaders::from_ethernet_slice(&packet).unwrap();
///
/// use etherparse::TransportHeader::*;
/// match headers.transport {
///     Some(Icmpv6(icmp)) => {
///         use etherparse::Icmpv6Type::*;
///         match icmp.icmp_type {
///             // Unknown is used when further decoding is currently not supported for the icmp type & code.
///             // You can still further decode the packet on your own by using the raw data in this enum
///             // together with `headers.payload` (contains the packet data after the 8th byte)
///             Unknown{ type_u8, code_u8, bytes5to8 } => println!("Unknown{{ type_u8: {}, code_u8: {}, bytes5to8: {:?} }}", type_u8, code_u8, bytes5to8),
///             DestinationUnreachable(header) => println!("{:?}", header),
///             PacketTooBig { mtu } => println!("TimeExceeded{{ mtu: {} }}", mtu),
///             TimeExceeded(code) => println!("{:?}", code),
///             ParameterProblem(header) => println!("{:?}", header),
///             EchoRequest(header) => println!("{:?}", header),
///             EchoReply(header) => println!("{:?}", header),
///         }
///     },
///     _ => {},
/// }
/// ```
///
/// # Encoding Example (only ICMPv6 part)
///
/// To get the on wire bytes of an Icmpv6Type it needs to get packaged
/// into a [`Icmpv6Header`] so the checksum gets calculated.
///
/// ```
/// # use etherparse::Ipv6Header;
/// # let ip_header: Ipv6Header = Default::default();
/// # let invoking_packet : [u8;0] = [];
///
/// use etherparse::{Icmpv6Type, icmpv6::DestUnreachableCode};
/// let t = Icmpv6Type::DestinationUnreachable(
///     DestUnreachableCode::Address
/// );
///
/// // to calculate the checksum the ip header and the payload
/// // (in case of dest unreachable the invoking packet) are needed
/// let header = t.to_header(ip_header.source, ip_header.destination, &invoking_packet).unwrap();
///
/// // an ICMPv6 packet is composed of the header and payload
/// let mut packet = Vec::with_capacity(header.header_len() + invoking_packet.len());
/// packet.extend_from_slice(&header.to_bytes());
/// packet.extend_from_slice(&invoking_packet);
/// #
/// # {
/// #   let checksum_be = header.checksum.to_be_bytes();
/// #   assert_eq!(
/// #       &packet,
/// #       &[
/// #           header.icmp_type.type_u8(),
/// #           header.icmp_type.code_u8(),
/// #           checksum_be[0],
/// #           checksum_be[1],
/// #           0,0,0,0
/// #       ]
/// #   );
/// # }
/// ```
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Icmpv6Type {
    /// In case of an unknown icmp type is received the header elements of
    /// the first 8 bytes/octets are stored raw in this enum value.
    ///
    /// # What is part of the header for `Icmpv6Type::Unknown`?
    ///
    /// For unknown ICMPv6 type & code combination the first 8 bytes are stored
    /// in the [`Icmpv6Header`] and the rest is stored in the payload
    /// ([`Icmpv6Slice::payload`] or [`PacketHeaders::payload`]).
    ///
    ///
    /// ```text
    /// 0               1               2               3               4
    /// +---------------------------------------------------------------+  -
    /// |     type_u8   |    code_u8    |  checksum (in Icmpv6Header)   |  |
    /// +---------------------------------------------------------------+  | part of header & type
    /// |                          bytes5to8                            |  ↓
    /// +---------------------------------------------------------------+  -
    /// |                                                               |  |
    /// ...                           ...                             ...  | part of payload
    /// |                                                               |  ↓
    /// +---------------------------------------------------------------+  -
    /// ```
    Unknown {
        /// ICMPv6 type (present in the first byte of the ICMPv6 packet).
        type_u8: u8,
        /// ICMPv6 code (present in the 2nd byte of the ICMPv6 packet).
        code_u8: u8,
        /// Bytes located at th 5th, 6th, 7th and 8th position of the ICMP packet.
        bytes5to8: [u8; 4],
    },

    /// Message sent to inform the client that the destination is unreachable for
    /// some reason.
    ///
    /// # What is part of the header for `Icmpv6Type::DestinationUnreachable`?
    ///
    /// For the `Icmpv6Type::DestinationUnreachable` type the first 8 bytes/octets of the ICMPv6
    /// packet are part of the header. The `unused` part is not stored and droped.
    /// The offending packet is stored in the payload part of the packet
    /// ([`Icmpv6Slice::payload`] & [`PacketHeaders::payload`]) and is not part of
    /// the [`Icmpv6Header`].
    ///
    /// ```text
    /// 0               1               2               3               4
    /// +---------------------------------------------------------------+  -
    /// |       1       | [value as u8] |  checksum (in Icmpv6Header)   |  |
    /// +---------------------------------------------------------------+  | part of header & type
    /// |                           <unused>                            |  ↓
    /// +---------------------------------------------------------------+  -
    /// |                                                               |  |
    /// |     <As much of invoking packet as possible without           |  | part of payload
    /// ...   the ICMPv6 packet exceeding the minimum IPv6 MTU>       ...  |
    /// |                                                               |  ↓
    /// +---------------------------------------------------------------+  -
    /// ```
    ///
    /// # RFC 4443 Description
    ///
    /// A Destination Unreachable message SHOULD be generated by a router, or
    /// by the IPv6 layer in the originating node, in response to a packet
    /// that cannot be delivered to its destination address for reasons other
    /// than congestion.  (An ICMPv6 message MUST NOT be generated if a
    /// packet is dropped due to congestion.)
    DestinationUnreachable(icmpv6::DestUnreachableCode),

    /// Sent if a packet to too big to be forwarded.
    ///
    /// # What is part of the header for `Icmpv6Type::PacketTooBig`?
    ///
    /// For the `Icmpv6Type::PacketTooBig` type the first 8 bytes/octets of the ICMPv6
    /// packet are part of the header. The offending packet is stored in the payload part of the packet
    /// ([`Icmpv6Slice::payload`] & [`PacketHeaders::payload`]) and is not part of
    /// the [`Icmpv6Header`].
    ///
    /// ```text
    /// 0               1               2               3               4
    /// +---------------------------------------------------------------+  -
    /// |       2       |       0       |  checksum (in Icmpv6Header)   |  |
    /// +---------------------------------------------------------------+  | part of header & type
    /// |                              mtu                              |  ↓
    /// +---------------------------------------------------------------+  -
    /// |                                                               |  |
    /// |     <As much of invoking packet as possible without           |  | part of payload
    /// ...   the ICMPv6 packet exceeding the minimum IPv6 MTU>       ...  |
    /// |                                                               |  ↓
    /// +---------------------------------------------------------------+  -
    /// ```
    ///
    /// # RFC 4443 Description
    ///
    /// A Packet Too Big MUST be sent by a router in response to a packet
    /// that it cannot forward because the packet is larger than the MTU of
    /// the outgoing link.  The information in this message is used as part
    /// of the Path MTU Discovery process.
    PacketTooBig {
        /// The Maximum Transmission Unit of the next-hop link.
        mtu: u32,
    },

    /// Generated when a datagram had to be discarded due to the hop limit field
    /// reaching zero.
    ///
    /// # What is part of the header for `Icmpv6Type::TimeExceeded`?
    ///
    /// For the `Icmpv6Type::TimeExceeded` type the first 8 bytes/octets of the ICMPv6
    /// packet are part of the header. The `unused` part is not stored and droped.
    /// The offending packet is stored in the payload part of the packet
    /// ([`Icmpv6Slice::payload`] & [`PacketHeaders::payload`]) and is not part of
    /// the [`Icmpv6Header`].
    ///
    /// ```text
    /// 0               1               2               3               4
    /// +---------------------------------------------------------------+  -
    /// |       3       | [value as u8] |  checksum (in Icmpv6Header)   |  |
    /// +---------------------------------------------------------------+  | part of header & type
    /// |                           <unused>                            |  ↓
    /// +---------------------------------------------------------------+  -
    /// |                                                               |  |
    /// |     <As much of invoking packet as possible without           |  | part of payload
    /// ...   the ICMPv6 packet exceeding the minimum IPv6 MTU>       ...  |
    /// |                                                               |  ↓
    /// +---------------------------------------------------------------+  -
    /// ```
    ///
    /// # RFC 4443 Description
    ///
    /// If a router receives a packet with a Hop Limit of zero, or if a
    /// router decrements a packet's Hop Limit to zero, it MUST discard the
    /// packet and originate an ICMPv6 Time Exceeded message with Code 0 to
    /// the source of the packet.  This indicates either a routing loop or
    /// too small an initial Hop Limit value.
    ///
    /// An ICMPv6 Time Exceeded message with Code 1 is used to report
    /// fragment reassembly timeout, as specified in [IPv6, Section 4.5].
    TimeExceeded(icmpv6::TimeExceededCode),

    /// Sent if there is a problem with a parameter in a received packet.
    ///
    /// # What is part of the header for `Icmpv6Type::ParameterProblem`?
    ///
    /// For the `Icmpv6Type::ParameterProblem` type the first 8 bytes/octets of the ICMPv6
    /// packet are part of the header. The `unused` part is not stored and droped.
    /// The offending packet is stored in the payload part of the packet
    /// ([`Icmpv6Slice::payload`] & [`PacketHeaders::payload`]) and is not part of
    /// the [`Icmpv6Header`].
    ///
    /// ```text
    /// 0               1               2               3               4
    /// +---------------------------------------------------------------+  -
    /// |       4       | [value].code  |  checksum (in Icmpv6Header)   |  |
    /// +---------------------------------------------------------------+  | part of header & type
    /// |                        [value].pointer                        |  ↓
    /// +---------------------------------------------------------------+  -
    /// |                                                               |  |
    /// |     <As much of invoking packet as possible without           |  | part of payload
    /// ...   the ICMPv6 packet exceeding the minimum IPv6 MTU>       ...  |
    /// |                                                               |  ↓
    /// +---------------------------------------------------------------+  -
    /// ```
    ///
    /// # RFC 4443 Description
    ///
    /// If an IPv6 node processing a packet finds a problem with a field in
    /// the IPv6 header or extension headers such that it cannot complete
    /// processing the packet, it MUST discard the packet and SHOULD
    /// originate an ICMPv6 Parameter Problem message to the packet's source,
    /// indicating the type and location of the problem.
    ParameterProblem(icmpv6::ParameterProblemHeader),

    /// Requesting an `EchoReply` from the receiver.
    ///
    /// # What is part of the header for `Icmpv6Type::EchoRequest`?
    ///
    /// For the [`Icmpv6Type::EchoRequest`] type the first 8 bytes/octets of the
    /// ICMPv6 packet are part of the header. This includes the `id` and `seq`
    /// fields. The data part of the ICMP echo request packet is part of the payload
    /// ([`Icmpv6Slice::payload`] & [`PacketHeaders::payload`]) and not part of the
    /// [`Icmpv6Header`].
    ///
    /// ```text
    /// 0               1               2               3               4
    /// +---------------------------------------------------------------+  -
    /// |      128      |       0       |  checksum (in Icmpv6Header)   |  |
    /// +---------------------------------------------------------------+  | part of header & type
    /// |          [value].id           |         [value].seq           |  ↓
    /// +---------------------------------------------------------------+  -
    /// |                                                               |  |
    /// ...                          <data>                           ...  | part of payload
    /// |                                                               |  ↓
    /// +---------------------------------------------------------------+  -
    /// ```
    ///
    /// # RFC 4443 Description
    ///
    /// Every node MUST implement an ICMPv6 Echo responder function that
    /// receives Echo Requests and originates corresponding Echo Replies.  A
    /// node SHOULD also implement an application-layer interface for
    /// originating Echo Requests and receiving Echo Replies, for diagnostic
    /// purposes.
    EchoRequest(IcmpEchoHeader),
    /// Response to an `EchoRequest` message.
    ///
    /// # What is part of the header for `Icmpv6Type::EchoReply`?
    ///
    /// For the [`Icmpv6Type::EchoReply`] type the first 8 bytes/octets of the
    /// ICMPv6 packet are part of the header. This includes the `id` and `seq`
    /// fields. The data part of the ICMP echo request packet is part of the payload
    /// ([`Icmpv6Slice::payload`] & [`PacketHeaders::payload`]) and not part of the
    /// [`Icmpv6Header`].
    ///
    /// ```text
    /// 0               1               2               3               4
    /// +---------------------------------------------------------------+  -
    /// |      129      |       0       |  checksum (in Icmpv6Header)   |  |
    /// +---------------------------------------------------------------+  | part of header & type
    /// |          [value].id           |         [value].seq           |  ↓
    /// +---------------------------------------------------------------+  -
    /// |                                                               |  |
    /// ...                          <data>                           ...  | part of payload
    /// |                                                               |  ↓
    /// +---------------------------------------------------------------+  -
    /// ```
    ///
    /// # RFC 4443 Description
    ///
    /// Every node MUST implement an ICMPv6 Echo responder function that
    /// receives Echo Requests and originates corresponding Echo Replies. A
    /// node SHOULD also implement an application-layer interface for
    /// originating Echo Requests and receiving Echo Replies, for diagnostic
    /// purposes.
    ///
    /// The source address of an Echo Reply sent in response to a unicast
    /// Echo Request message MUST be the same as the destination address of
    /// that Echo Request message.
    ///
    /// An Echo Reply SHOULD be sent in response to an Echo Request message
    /// sent to an IPv6 multicast or anycast address.  In this case, the
    /// source address of the reply MUST be a unicast address belonging to
    /// the interface on which the Echo Request message was received.
    ///
    /// The data received in the ICMPv6 Echo Request message MUST be returned
    /// entirely and unmodified in the ICMPv6 Echo Reply message.
    EchoReply(IcmpEchoHeader),
}

impl Icmpv6Type {

    /// Returns the type value (first byte of the ICMPv6 header) of this type.
    #[inline]
    pub fn type_u8(&self) -> u8 {
        use Icmpv6Type::*;
        match self {
            Unknown {
                type_u8,
                code_u8: _,
                bytes5to8: _,
            } => *type_u8,
            DestinationUnreachable(_) => TYPE_DST_UNREACH,
            PacketTooBig { mtu: _ } => TYPE_PACKET_TOO_BIG,
            TimeExceeded(_) => TYPE_TIME_EXCEEDED,
            ParameterProblem(_) => TYPE_PARAMETER_PROBLEM,
            EchoRequest(_) => TYPE_ECHO_REQUEST,
            EchoReply(_) => TYPE_ECHO_REPLY,
        }
    }

    /// Returns the code value (second byte of the ICMPv6 header) of this type.
    #[inline]
    pub fn code_u8(&self) -> u8 {
        use Icmpv6Type::*;
        match self {
            Unknown {
                type_u8: _,
                code_u8,
                bytes5to8: _,
            } => *code_u8,
            DestinationUnreachable(code) => code.code_u8(),
            PacketTooBig { mtu: _ } => 0,
            TimeExceeded(code) => code.code_u8(),
            ParameterProblem(header) => header.code.code_u8(),
            EchoRequest(_) => 0,
            EchoReply(_) => 0,
        }
    }

    /// Calculates the checksum of the ICMPv6 header.
    ///
    /// <p style="background:rgba(255,181,77,0.16);padding:0.75em;">
    /// <strong>Warning:</strong> Don't use this method to verfy if a checksum of a
    /// received packet is correct. This method assumes that all unused bytes are
    /// filled with zeros. If this is not the case the computed checksum value will
    /// will be incorrect for a received packet.
    ///
    /// If you want to verify that a received packet has a correct checksum use
    /// [`Icmpv6Slice::is_checksum_valid`] instead.
    /// </p>
    pub fn calc_checksum(
        &self,
        source_ip: [u8; 16],
        destination_ip: [u8; 16],
        payload: &[u8],
    ) -> Result<u16, ValueError> {
        // check that the total length fits into the field
        //
        // Note according to RFC 2460 the "Upper-Layer Packet Length" used
        // in the checksum calculation, for protocols that don't contain
        // their own length information (like ICMPv6), is "the Payload Length
        // from the IPv6 header, minus the length of any extension headers present
        // between the IPv6 header and the upper-layer header."
        let max_payload_len: usize = (std::u32::MAX as usize) - self.header_len();
        if max_payload_len < payload.len() {
            return Err(ValueError::Ipv6PayloadLengthTooLarge(payload.len()));
        }

        let msg_len = payload.len() + self.header_len();

        // calculate the checksum
        // NOTE: rfc4443 section 2.3 - Icmp6 *does* use a pseudoheader,
        // unlike Icmp4
        let pseudo_sum = checksum::Sum16BitWords::new()
            .add_16bytes(source_ip)
            .add_16bytes(destination_ip)
            .add_2bytes([0, ip_number::IPV6_ICMP])
            .add_4bytes((msg_len as u32).to_be_bytes());

        use Icmpv6Type::*;
        Ok(
            match self {
                Unknown {
                    type_u8,
                    code_u8,
                    bytes5to8,
                } => {
                    pseudo_sum.add_2bytes([*type_u8, *code_u8])
                    .add_4bytes(*bytes5to8)
                },
                DestinationUnreachable(header) => {
                    pseudo_sum.add_2bytes([TYPE_DST_UNREACH, header.code_u8()])
                },
                PacketTooBig { mtu } => {
                    pseudo_sum.add_2bytes([TYPE_PACKET_TOO_BIG, 0])
                    .add_4bytes(mtu.to_be_bytes())
                },
                TimeExceeded(code) => {
                    pseudo_sum.add_2bytes([TYPE_TIME_EXCEEDED, code.code_u8()])
                },
                ParameterProblem(header) => {
                    pseudo_sum.add_2bytes([TYPE_PARAMETER_PROBLEM, header.code.code_u8()])
                    .add_4bytes(header.pointer.to_be_bytes())
                }
                EchoRequest(echo) => {
                    pseudo_sum.add_2bytes([TYPE_ECHO_REQUEST, 0])
                    .add_4bytes(echo.to_bytes())
                }
                EchoReply(echo) => {
                    pseudo_sum.add_2bytes([TYPE_ECHO_REPLY, 0])
                    .add_4bytes(echo.to_bytes())
                }
            }
            .add_slice(payload)
            .ones_complement()
            .to_be()
        )
    }

    /// Creates a header with the correct checksum.
    pub fn to_header(
        self,
        source_ip: [u8; 16],
        destination_ip: [u8; 16],
        payload: &[u8],
    ) -> Result<Icmpv6Header, ValueError> {
        Ok(Icmpv6Header {
            checksum: self.calc_checksum(source_ip, destination_ip, payload)?,
            icmp_type: self,
        })
    }

    /// Serialized length of the header in bytes/octets.
    ///
    /// Note that this size is not the size of the entire
    /// ICMPv6 packet but only the header.
    pub fn header_len(&self) -> usize {
        use Icmpv6Type::*;
        match self {
            Unknown {
                type_u8: _,
                code_u8: _,
                bytes5to8: _,
            }
            | DestinationUnreachable(_)
            | PacketTooBig{ mtu: _ }
            | TimeExceeded(_)
            | ParameterProblem(_)
            | EchoRequest(_)
            | EchoReply(_) => 8,
        }
    }

    /// If the ICMP type has a fixed size returns the number of
    /// bytes that should be present after the header of this type.
    #[inline]
    pub fn fixed_payload_size(&self) -> Option<usize> {
        use Icmpv6Type::*;
        match self {
            Unknown {
                type_u8: _,
                code_u8: _,
                bytes5to8: _,
            }
            | DestinationUnreachable(_)
            | PacketTooBig{ mtu: _ }
            | TimeExceeded(_)
            | ParameterProblem(_)
            | EchoRequest(_)
            | EchoReply(_) => None,
        }
    }
}

/// The statically sized data at the start of an ICMPv6 packet (at least the first 8 bytes of an ICMPv6 packet).
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct Icmpv6Header {
    /// Type & type specific values & code.
    pub icmp_type: Icmpv6Type,
    /// Checksum in the ICMPv6 header.
    pub checksum: u16,
}

impl Icmpv6Header {
    /// Minimum number of bytes an ICMP header needs to have.
    ///
    /// Note that minimum size can be larger depending on
    /// the type and code.
    pub const MIN_SERIALIZED_SIZE: usize = 8;

    /// Maximum number of bytes/octets an Icmpv6Header takes up
    /// in serialized form.
    ///
    /// Currently this number is determined by the biggest
    /// planned ICMPv6 header type, which is currently the
    /// "Neighbor Discovery Protocol" "Redirect" message.
    pub const MAX_SERIALIZED_SIZE: usize = 8 + 16 + 16;

    /// Setups a new header with the checksum beeing set to 0.
    #[inline]
    pub fn new(icmp_type: Icmpv6Type) -> Icmpv6Header {
        Icmpv6Header {
            icmp_type,
            checksum: 0, // will be filled in later
        }
    }

    /// Creates a [`Icmpv6Header`] with a checksum calculated based
    /// on the given payload & ip addresses from the IPv6 header.
    pub fn with_checksum(
        icmp_type: Icmpv6Type,
        source_ip: [u8; 16],
        destination_ip: [u8; 16],
        payload: &[u8],
    ) -> Result<Icmpv6Header, ValueError> {
        let checksum = icmp_type.calc_checksum(source_ip, destination_ip, payload)?;
        Ok(Icmpv6Header {
            icmp_type,
            checksum,
        })
    }

    /// Reads an icmp6 header from a slice directly and returns a tuple
    /// containing the resulting header & unused part of the slice.
    #[inline]
    pub fn from_slice(slice: &[u8]) -> Result<(Icmpv6Header, &[u8]), ReadError> {
        let header = Icmpv6Slice::from_slice(slice)?.header();
        let len = header.header_len();
        Ok((header, &slice[len..]))
    }

    /// Read a ICMPv6 header from the given reader
    pub fn read<T: io::Read + Sized>(reader: &mut T) -> Result<Icmpv6Header, ReadError> {
        // read the initial 8 bytes
        let mut start = [0u8;8];
        reader.read_exact(&mut start)?;
        Ok(Icmpv6Slice{
            slice: &start
        }.header())
    }

    /// Write the ICMPv6 header to the given writer.
    pub fn write<T: io::Write + Sized>(&self, writer: &mut T) -> Result<(), WriteError> {
        writer.write_all(&self.to_bytes()).map_err(WriteError::from)
    }

    /// Serialized length of the header in bytes/octets.
    ///
    /// Note that this size is not the size of the entire
    /// ICMPv6 packet but only the header.
    #[inline]
    pub fn header_len(&self) -> usize {
        self.icmp_type.header_len()
    }

    /// If the ICMP type has a fixed size returns the number of
    /// bytes that should be present after the header of this type.
    #[inline]
    pub fn fixed_payload_size(&self) -> Option<usize> {
        self.icmp_type.fixed_payload_size()
    }

    /// Updates the checksum of the header.
    pub fn update_checksum(
        &mut self,
        source_ip: [u8; 16],
        destination_ip: [u8; 16],
        payload: &[u8],
    ) -> Result<(), ValueError> {
        self.checksum = self
            .icmp_type
            .calc_checksum(source_ip, destination_ip, payload)?;
        Ok(())
    }

    /// Returns the header on the wire bytes.
    #[inline]
    pub fn to_bytes(&self) -> ArrayVec<u8, { Icmpv6Header::MAX_SERIALIZED_SIZE }> {

        let checksum_be = self.checksum.to_be_bytes();

        let return_trivial = |type_u8: u8, code_u8: u8| -> ArrayVec<u8, { Icmpv6Header::MAX_SERIALIZED_SIZE }> {
            #[rustfmt::skip]
            let mut re = ArrayVec::from([
                type_u8, code_u8, checksum_be[0], checksum_be[1],
                0, 0, 0, 0,

                0, 0, 0, 0,
                0, 0, 0, 0,
                0, 0, 0, 0,
                0, 0, 0, 0,

                0, 0, 0, 0,
                0, 0, 0, 0,
                0, 0, 0, 0,
                0, 0, 0, 0,
            ]);
            // SAFETY: Safe as u8 has no destruction behavior and as 8 is smaller then 20.
            unsafe {
                re.set_len(8);
            }
            re
        };

        let return_4u8 = |type_u8: u8, code_u8: u8, bytes5to8: [u8;4]| -> ArrayVec<u8, { Icmpv6Header::MAX_SERIALIZED_SIZE }> {
            #[rustfmt::skip]
            let mut re = ArrayVec::from([
                type_u8, code_u8, checksum_be[0], checksum_be[1],
                bytes5to8[0], bytes5to8[1], bytes5to8[2], bytes5to8[3],

                0, 0, 0, 0,
                0, 0, 0, 0,
                0, 0, 0, 0,
                0, 0, 0, 0,

                0, 0, 0, 0,
                0, 0, 0, 0,
                0, 0, 0, 0,
                0, 0, 0, 0,
            ]);
            // SAFETY: Safe as u8 has no destruction behavior and as 8 is smaller then 20.
            unsafe {
                re.set_len(8);
            }
            re
        };

        use Icmpv6Type::*;
        match self.icmp_type {
            Unknown {
                type_u8,
                code_u8,
                bytes5to8,
            } => {
                return_4u8(type_u8, code_u8, bytes5to8)
            },
            DestinationUnreachable(header) => {
                return_trivial(TYPE_DST_UNREACH, header.code_u8())
            },
            PacketTooBig { mtu } => {
                return_4u8(TYPE_PACKET_TOO_BIG, 0, mtu.to_be_bytes())
            },
            TimeExceeded(code) => {
                return_trivial(TYPE_TIME_EXCEEDED, code.code_u8())
            },
            ParameterProblem(header) => {
                return_4u8(TYPE_PARAMETER_PROBLEM, header.code.code_u8(), header.pointer.to_be_bytes())
            }
            EchoRequest(echo) => {
                return_4u8(TYPE_ECHO_REQUEST, 0, echo.to_bytes())
            },
            EchoReply(echo) => {
                return_4u8(TYPE_ECHO_REPLY, 0, echo.to_bytes())
            },
        }
    }
}

/// A slice containing an ICMPv6 network package.
///
/// Struct allows the selective read of fields in the ICMPv6
/// packet.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct Icmpv6Slice<'a> {
    slice: &'a [u8],
}

impl<'a> Icmpv6Slice<'a> {
    /// Creates a slice containing an ICMPv6 packet.
    ///
    /// # Errors
    ///
    /// The function will return an `Err` `ReadError::UnexpectedEndOfSlice`
    /// if the given slice is too small (smaller then `Icmpv6Header::MIN_SERIALIZED_SIZE`) or
    /// too large (bigger then `icmpv6::MAX_ICMPV6_BYTE_LEN`).
    #[inline]
    pub fn from_slice(slice: &'a [u8]) -> Result<Icmpv6Slice<'a>, ReadError> {
        //check length
        use crate::ReadError::*;
        if slice.len() < Icmpv6Header::MIN_SERIALIZED_SIZE {
            return Err(UnexpectedEndOfSlice(Icmpv6Header::MIN_SERIALIZED_SIZE));
        }
        if slice.len() > icmpv6::MAX_ICMPV6_BYTE_LEN {
            return Err(Icmpv6PacketTooBig(slice.len()));
        }

        //done
        Ok(Icmpv6Slice { slice })
    }

    /// Decode the header fields and copy the results to a [`Icmpv6Header`] struct.
    #[inline]
    pub fn header(&self) -> Icmpv6Header {
        Icmpv6Header {
            icmp_type: self.icmp_type(),
            checksum: self.checksum(),
        }
    }

    /// Number of bytes/octets that will be converted into a
    /// [`Icmpv6Header`] when [`Icmpv6Slice::header`] gets called.
    #[inline]
    pub fn header_len(&self) -> usize {
        8
    }

    /// Decode the header values (excluding the checksum) into an [`Icmpv6Type`] enum.
    pub fn icmp_type(&self) -> Icmpv6Type {
        use Icmpv6Type::*;

        match self.type_u8() {
            TYPE_DST_UNREACH => {
                if let Some(code) = DestUnreachableCode::from_u8(self.code_u8()) {
                    return DestinationUnreachable(code);
                }
            }
            TYPE_PACKET_TOO_BIG => {
                if 0 == self.code_u8() {
                    return PacketTooBig {
                        mtu: u32::from_be_bytes(self.bytes5to8()),
                    };
                }
            }
            TYPE_TIME_EXCEEDED => {
                if let Some(code) = TimeExceededCode::from_u8(self.code_u8()) {
                    return TimeExceeded(code);
                }
            }
            TYPE_PARAMETER_PROBLEM => {
                if let Some(code) = ParameterProblemCode::from_u8(self.code_u8()) {
                    return ParameterProblem(
                        ParameterProblemHeader{
                            code,
                            pointer: u32::from_be_bytes(self.bytes5to8())
                        }
                    );
                }
            }
            TYPE_ECHO_REQUEST => {
                if 0 == self.code_u8() {
                    return EchoRequest(IcmpEchoHeader::from_bytes(self.bytes5to8()));
                }
            }
            TYPE_ECHO_REPLY => {
                if 0 == self.code_u8() {
                    return EchoReply(IcmpEchoHeader::from_bytes(self.bytes5to8()));
                }
            }
            _ => {}
        }
        Unknown {
            type_u8: self.type_u8(),
            code_u8: self.code_u8(),
            bytes5to8: self.bytes5to8(),
        }
    }

    /// Returns "type" value in the ICMPv6 header.
    #[inline]
    pub fn type_u8(&self) -> u8 {
        // SAFETY:
        // Safe as the contructor checks that the slice has
        // at least the length of Icmpv6Header::MIN_SERIALIZED_SIZE (8).
        unsafe { *self.slice.get_unchecked(0) }
    }

    /// Returns "code" value in the ICMPv6 header.
    #[inline]
    pub fn code_u8(&self) -> u8 {
        // SAFETY:
        // Safe as the contructor checks that the slice has
        // at least the length of Icmpv6Header::MIN_SERIALIZED_SIZE (8).
        unsafe { *self.slice.get_unchecked(1) }
    }

    /// Returns "checksum" value in the ICMPv6 header.
    #[inline]
    pub fn checksum(&self) -> u16 {
        // SAFETY:
        // Safe as the contructor checks that the slice has
        // at least the length of Icmpv6Header::MIN_SERIALIZED_SIZE  (8).
        unsafe { get_unchecked_be_u16(self.slice.as_ptr().add(2)) }
    }

    /// Returns if the checksum in the slice is correct.
    pub fn is_checksum_valid(&self, source_ip: [u8; 16], destination_ip: [u8; 16]) -> bool {
        // NOTE: rfc4443 section 2.3 - Icmp6 *does* use a pseudoheader,
        // unlike Icmp4
        checksum::Sum16BitWords::new()
            .add_16bytes(source_ip)
            .add_16bytes(destination_ip)
            .add_4bytes((self.slice().len() as u32).to_be_bytes())
            .add_2bytes([0, ip_number::IPV6_ICMP])
            // NOTE: From RFC 1071
            // To check a checksum, the 1's complement sum is computed over the
            // same set of octets, including the checksum field.  If the result
            // is all 1 bits (-0 in 1's complement arithmetic), the check
            // succeeds.
            .add_slice(self.slice)
            .ones_complement()
            == 0
    }

    /// Returns the bytes from position 4 till and including the 8th position
    /// in the ICMPv6 header.
    ///
    /// These bytes located at th 5th, 6th, 7th and 8th position of the ICMP
    /// packet can depending on the ICMPv6 type and code contain additional data.
    #[inline]
    pub fn bytes5to8(&self) -> [u8; 4] {
        // SAFETY:
        // Safe as the contructor checks that the slice has
        // at least the length of Icmpv6Header::MIN_SERIALIZED_SIZE  (8).
        unsafe {
            [
                *self.slice.get_unchecked(4),
                *self.slice.get_unchecked(5),
                *self.slice.get_unchecked(6),
                *self.slice.get_unchecked(7),
            ]
        }
    }

    /// Returns the slice containing the ICMPv6 packet.
    #[inline]
    pub fn slice(&self) -> &'a [u8] {
        self.slice
    }

    /// Returns a slice to the bytes not covered by `.header()`.
    #[inline]
    pub fn payload(&self) -> &'a [u8] {
        // SAFETY:
        // Safe as the contructor checks that the slice has
        // at least the length of Icmpv6Header::MIN_SERIALIZED_SIZE(8).
        unsafe { from_raw_parts(self.slice.as_ptr().add(8), self.slice.len() - 8) }
    }
}