1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
use super::super::*;

use std::net::Ipv6Addr;
use std::slice::from_raw_parts;

///IPv6 header according to rfc8200.
#[derive(Clone, Debug, Eq, PartialEq, Default)]
pub struct Ipv6Header {
    pub traffic_class: u8,
    ///If non 0 serves as a hint to router and switches with multiple outbound paths that these packets should stay on the same path, so that they will not be reordered.
    pub flow_label: u32,
    ///The length of the payload and extension headers in bytes (0 in case of jumbo payloads).
    pub payload_length: u16,
    /// IP protocol number specifying the next header or transport layer protocol.
    ///
    /// See [IpNumber] or [ip_number] for a definitions of ids.
    pub next_header: u8,
    ///The number of hops the packet can take before it is discarded.
    pub hop_limit: u8,
    ///IPv6 source address
    pub source: [u8;16],
    ///IPv6 destination address
    pub destination: [u8;16]
}

impl SerializedSize for Ipv6Header {
    ///Size of the header itself in bytes.
    const SERIALIZED_SIZE:usize = 40;
}

impl Ipv6Header {

    /// Renamed to `Ipv6Header::from_slice`
    #[deprecated(
        since = "0.10.1",
        note = "Renamed to `Ipv6Header::from_slice`"
    )]
    #[inline]
    pub fn read_from_slice(slice: &[u8]) -> Result<(Ipv6Header, &[u8]), ReadError> {
        Ipv6Header::from_slice(slice)
    }

    /// Read an Ipv6Header from a slice and return the header & unused parts of the slice.
    #[inline]
    pub fn from_slice(slice: &[u8]) -> Result<(Ipv6Header, &[u8]), ReadError> {
        Ok((
            Ipv6HeaderSlice::from_slice(slice)?.to_header(), 
            &slice[Ipv6Header::SERIALIZED_SIZE..]
        ))
    }

    ///Reads an IPv6 header from the current position.
    pub fn read<T: io::Read + io::Seek + Sized>(reader: &mut T) -> Result<Ipv6Header, ReadError> {
        let mut value : [u8;1] = [0;1];
        reader.read_exact(&mut value)?;
        let version = value[0] >> 4;
        if 6 != version {
            return Err(ReadError::Ipv6UnexpectedVersion(version));
        }
        match Ipv6Header::read_without_version(reader, value[0] & 0xf) {
            Ok(value) => Ok(value),
            Err(err) => Err(ReadError::IoError(err))
        }
    }

    ///Reads an IPv6 header assuming the version & flow_label field have already been read.
    pub fn read_without_version<T: io::Read + io::Seek + Sized>(reader: &mut T, version_rest: u8) -> Result<Ipv6Header, io::Error> {

        let mut buffer : [u8;8+32-1] = [0;8+32-1];
        reader.read_exact(&mut buffer[..])?;

        Ok(Ipv6Header{
            traffic_class: (version_rest << 4) | (buffer[0] >> 4),
            flow_label: u32::from_be_bytes([0, buffer[0] & 0xf, buffer[1], buffer[2]]),
            payload_length: u16::from_be_bytes([buffer[3], buffer[4]]),
            next_header: buffer[5],
            hop_limit: buffer[6],
            source: [
                buffer[7],  buffer[8],  buffer[9],  buffer[10],
                buffer[11], buffer[12], buffer[13], buffer[14],
                buffer[15], buffer[16], buffer[17], buffer[18],
                buffer[19], buffer[20], buffer[21], buffer[22],
            ],
            destination: [
                buffer[23], buffer[24], buffer[25], buffer[26],
                buffer[27], buffer[28], buffer[29], buffer[30],
                buffer[31], buffer[32], buffer[33], buffer[34],
                buffer[35], buffer[36], buffer[37], buffer[38],
            ]
        })
    }

    ///Takes a slice and skips an ipv6 header extensions and returns the next_header ip number & the slice past the header.
    pub fn skip_header_extension_in_slice(slice: &[u8], next_header: u8) -> Result<(u8, &[u8]), ReadError> {
        use crate::ip_number::*;

        if slice.len() >= 2 {
            //determine the length
            let len = match next_header {
                IPV6_FRAG => 8,
                AUTH => (usize::from(slice[1]) + 2)*4,
                IPV6_HOP_BY_HOP | IPV6_ROUTE | IPV6_DEST_OPTIONS | MOBILITY | HIP | SHIM6 => {
                    (usize::from(slice[1]) + 1)*8
                },
                // not a ipv6 header extension that can be skipped
                _ => return Ok((next_header, slice))
            };

            if slice.len() < len {
                Err(ReadError::UnexpectedEndOfSlice(len))
            } else {
                Ok((slice[0], &slice[len..]))
            }
        } else {
            Err(ReadError::UnexpectedEndOfSlice(2))
        }
    }

    /// Returns true if the given ip protocol number is a skippable header extension.
    ///
    /// A skippable header extension is an extension header for which it is known how 
    /// to determine the protocol number of the following header as well as how many 
    /// octets have to be skipped to reach the start of the following header.
    pub fn is_skippable_header_extension(ip_protocol_number: u8) -> bool {
        use crate::ip_number::*;
        //Note: EncapsulatingSecurityPayload & ExperimentalAndTesting0 can not be skipped
        matches!(ip_protocol_number, IPV6_HOP_BY_HOP | IPV6_ROUTE | IPV6_FRAG | AUTH | IPV6_DEST_OPTIONS | MOBILITY | HIP | SHIM6)
    }

    ///Takes a slice & ip protocol number (identifying the first header type) and returns next_header id & the slice past after all ipv6 header extensions.
    pub fn skip_all_header_extensions_in_slice(slice: &[u8], next_header: u8) -> Result<(u8, &[u8]), ReadError> {

        let mut next_header = next_header;
        let mut rest = slice;
        
        for _i in 0..IPV6_MAX_NUM_HEADER_EXTENSIONS {

            let (n_id, n_rest) = Ipv6Header::skip_header_extension_in_slice(rest, next_header)?;

            if n_rest.len() == rest.len() {
                return Ok((next_header, rest))
            } else {
                next_header = n_id;
                rest = n_rest;
            }
        }

        // final check
        if Ipv6Header::is_skippable_header_extension(next_header) {
            Err(ReadError::Ipv6TooManyHeaderExtensions)
        } else {
            Ok((next_header, rest))
        }
    }

    ///Skips the ipv6 header extension and returns the next ip protocol number
    pub fn skip_header_extension<T: io::Read + io::Seek + Sized>(reader: &mut T, next_header: u8) -> Result<u8, io::Error> {
        use crate::ip_number::*;

        let (next_header, rest_length) = match next_header {
            IPV6_FRAG => {
                let mut buf = [0; 1];
                reader.read_exact(&mut buf)?;
                (buf[0], 7)
            },
            AUTH => {
                let mut buf = [0; 2];
                reader.read_exact(&mut buf)?;
                (buf[0], i64::from(buf[1])*4 + 6)
            },
            IPV6_HOP_BY_HOP | IPV6_ROUTE | IPV6_DEST_OPTIONS | MOBILITY | HIP | SHIM6 => {
                let mut buf = [0; 2];
                reader.read_exact(&mut buf)?;
                (buf[0],i64::from(buf[1])*8 + 6)
            },
            // not a ipv6 header extension that can be skipped
            _ => return Ok(next_header)
        };

        //Sadly seek does not return an error if the seek could not be fullfilled.
        //Some implementations do not even truncate the returned position to the
        //last valid one. std::io::Cursor for example just moves the position
        //over the border of the given slice (e.g. returns position 15 even when
        //the given slice contains only 1 element).
        //The only option, to detect that we are in an invalid state, is to move the
        //seek offset to one byte before the end and then execute a normal read to
        //trigger an error.
        reader.seek(io::SeekFrom::Current(rest_length - 1))?;
        {
            let mut buf = [0; 1];
            reader.read_exact(&mut buf)?;
        }
        Ok(next_header)
    }

    ///Skips all ipv6 header extensions and returns the next ip protocol number
    pub fn skip_all_header_extensions<T: io::Read + io::Seek + Sized>(reader: &mut T, next_header: u8) -> Result<u8, ReadError> {

        let mut next_header = next_header;

        for _i in 0..IPV6_MAX_NUM_HEADER_EXTENSIONS {
            if Ipv6Header::is_skippable_header_extension(next_header)
            {
                next_header = Ipv6Header::skip_header_extension(reader, next_header)?;
            } else {
                return Ok(next_header);
            }
        }

        //final check
        if Ipv6Header::is_skippable_header_extension(next_header) {
            Err(ReadError::Ipv6TooManyHeaderExtensions)
        } else {
            Ok(next_header)
        }
    }

    ///Writes a given IPv6 header to the current position.
    pub fn write<T: io::Write + Sized>(&self, writer: &mut T) -> Result<(), WriteError> {
        use crate::ErrorField::*;
        fn max_check_u32(value: u32, max: u32, field: ErrorField) -> Result<(), WriteError> {
            if value <= max {
                Ok(())
            } else {
                Err(
                    WriteError::ValueError(
                        ValueError::U32TooLarge{
                            value, 
                            max, 
                            field
                        }
                    )
                )
            }
        }

        // check value ranges
        max_check_u32(self.flow_label, 0xfffff, Ipv6FlowLabel)?;

        // serialize header
        let flow_label_be = self.flow_label.to_be_bytes();
        let payload_len_be = self.payload_length.to_be_bytes();

        let header_raw = [
            (6 << 4) | (self.traffic_class >> 4), 
            (self.traffic_class << 4) | flow_label_be[1],
            flow_label_be[2],
            flow_label_be[3],

            payload_len_be[0],
            payload_len_be[1],
            self.next_header,
            self.hop_limit,

            self.source[0], self.source[1], self.source[2], self.source[3],
            self.source[4], self.source[5], self.source[6], self.source[7],
            self.source[8], self.source[9], self.source[10], self.source[11],
            self.source[12], self.source[13], self.source[14], self.source[15],

            self.destination[0], self.destination[1], self.destination[2], self.destination[3],
            self.destination[4], self.destination[5], self.destination[6], self.destination[7],
            self.destination[8], self.destination[9], self.destination[10], self.destination[11],
            self.destination[12], self.destination[13], self.destination[14], self.destination[15],
        ];
        writer.write_all(&header_raw)?;

        Ok(())
    }

    /// Length of the serialized header in bytes.
    ///
    /// The function always returns the constant Ipv6Header::SERIALIZED_SIZE
    /// and exists to keep the methods consistent with other headers. 
    #[inline]
    pub fn header_len(&self) -> usize {
        Ipv6Header::SERIALIZED_SIZE
    }

    ///Sets the field total_length based on the size of the payload and the options. Returns an error if the payload is too big to fit.
    pub fn set_payload_length(&mut self, size: usize) -> Result<(), ValueError> {
        //check that the total length fits into the field
        const MAX_PAYLOAD_LENGTH: usize = std::u16::MAX as usize;
        if MAX_PAYLOAD_LENGTH < size {
            return Err(ValueError::Ipv6PayloadLengthTooLarge(size));
        }

        self.payload_length = size as u16;
        Ok(())
    }
}

///A slice containing an ipv6 header of a network package.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct Ipv6HeaderSlice<'a> {
    slice: &'a [u8]
}

impl<'a> Ipv6HeaderSlice<'a, > {

    /// Creates a slice containing an ipv6 header (without header extensions).
    pub fn from_slice(slice: &'a[u8]) -> Result<Ipv6HeaderSlice<'a>, ReadError> {

        // check length
        use crate::ReadError::*;
        if slice.len() < Ipv6Header::SERIALIZED_SIZE {
            return Err(UnexpectedEndOfSlice(Ipv6Header::SERIALIZED_SIZE));
        }

        // read version & ihl
        //
        // SAFETY:
        // This is safe as the slice len is checked to be
        // at least 40 bytes at the start of the function.
        let version = unsafe {
            slice.get_unchecked(0) >> 4
        };

        // check version
        if 6 != version {
            return Err(Ipv6UnexpectedVersion(version));
        }

        // all good
        Ok(Ipv6HeaderSlice {
            // SAFETY:
            // This is safe as the slice length is checked to be
            // at least Ipv6Header::SERIALIZED_SIZE (40)
            // at the start of the function.
            slice: unsafe {
                from_raw_parts(
                    slice.as_ptr(),
                    Ipv6Header::SERIALIZED_SIZE
                )
            }
        })
    }

    ///Returns the slice containing the ipv6 header
    #[inline]
    pub fn slice(&self) -> &'a [u8] {
        self.slice
    }

    ///Read the "version" field from the slice (should be 6).
    #[inline]
    pub fn version(&self) -> u8 {
        // SAFETY:
        // Safe as the slice length is set to
        // Ipv6Header::SERIALIZED_SIZE (40) during construction
        // of the struct.
        unsafe {
            *self.slice.get_unchecked(0) >> 4
        }
    }

    ///Read the "traffic class" field from the slice.
    #[inline]
    pub fn traffic_class(&self) -> u8 {
        // SAFETY:
        // Safe as the slice length is set to
        // Ipv6Header::SERIALIZED_SIZE (40) during construction
        // of the struct.
        unsafe {
            (self.slice.get_unchecked(0) << 4) | 
            (self.slice.get_unchecked(1) >> 4)
        }
    }

    ///Read the "flow label" field from the slice.
    #[inline]
    pub fn flow_label(&self) -> u32 {
        u32::from_be_bytes(
            // SAFETY:
            // Safe as the slice length is set to
            // Ipv6Header::SERIALIZED_SIZE (40) during construction
            // of the struct.
            unsafe {
                [
                    0,
                    *self.slice.get_unchecked(1) & 0xf,
                    *self.slice.get_unchecked(2),
                    *self.slice.get_unchecked(3)
                ]
            }
        )
    }

    ///Read the "payload length" field from  the slice. The length should contain the length of all extension headers and payload.
    #[inline]
    pub fn payload_length(&self) -> u16 {
        // SAFETY:
        // Safe as the slice length is set to
        // Ipv6Header::SERIALIZED_SIZE (40) during construction
        // of the struct.
        unsafe {
            get_unchecked_be_u16(self.slice.as_ptr().add(4))
        }
    }

    /// Read the "next header" field from the slice.
    ///
    /// The next header value specifies what the next header or transport
    /// layer protocol is (see [IpNumber] or [ip_number] for a definitions of ids).
    #[inline]
    pub fn next_header(&self) -> u8 {
        // SAFETY:
        // Safe as the slice length is set to
        // Ipv6Header::SERIALIZED_SIZE (40) during construction
        // of the struct.
        unsafe {
            *self.slice.get_unchecked(6)
        }
    }

    ///Read the "hop limit" field from the slice. The hop limit specifies the number of hops the packet can take before it is discarded.
    #[inline]
    pub fn hop_limit(&self) -> u8 {
        // SAFETY:
        // Safe as the slice length is set to
        // Ipv6Header::SERIALIZED_SIZE (40) during construction
        // of the struct.
        unsafe {
            *self.slice.get_unchecked(7)
        }
    }

    ///Returns a slice containing the IPv6 source address.
    #[inline]
    pub fn source(&self) -> [u8;16] {
        // SAFETY:
        // Safe as the slice length is set to
        // Ipv6Header::SERIALIZED_SIZE (40) during construction
        // of the struct.
        unsafe {
            get_unchecked_16_byte_array(self.slice.as_ptr().add(8))
        }
    }

    ///Return the ipv6 source address as an std::net::Ipv6Addr
    pub fn source_addr(&self) -> Ipv6Addr {
        Ipv6Addr::from(self.source())
    }

    ///Returns a slice containing the IPv6 destination address.
    #[inline]
    pub fn destination(&self) -> [u8;16] {
        // SAFETY:
        // Safe as the slice length is set to
        // Ipv6Header::SERIALIZED_SIZE (40) during construction
        // of the struct.
        unsafe {
            get_unchecked_16_byte_array(self.slice.as_ptr().add(24))
        }
    }

    ///Return the ipv6 destination address as an std::net::Ipv6Addr
    pub fn destination_addr(&self) -> Ipv6Addr {
        Ipv6Addr::from(self.destination())
    }

    ///Decode all the fields and copy the results to a Ipv6Header struct
    pub fn to_header(&self) -> Ipv6Header {
        Ipv6Header {
            traffic_class: self.traffic_class(),
            flow_label: self.flow_label(),
            payload_length: self.payload_length(),
            next_header: self.next_header(),
            hop_limit: self.hop_limit(),
            source: self.source(),
            destination: self.destination()
        }
    }
}