1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
//! Verification functions for the [Equihash] proof-of-work algorithm.
//!
//! [Equihash]: https://zips.z.cash/protocol/protocol.pdf#equihash

use blake2b_simd::{Hash as Blake2bHash, Params as Blake2bParams, State as Blake2bState};
use byteorder::{BigEndian, LittleEndian, ReadBytesExt, WriteBytesExt};
use std::fmt;
use std::io::Cursor;
use std::mem::size_of;

#[derive(Clone, Copy)]
pub(crate) struct Params {
    pub(crate) n: u32,
    pub(crate) k: u32,
}

#[derive(Clone)]
struct Node {
    hash: Vec<u8>,
    indices: Vec<u32>,
}

impl Params {
    fn new(n: u32, k: u32) -> Result<Self, Error> {
        // We place the following requirements on the parameters:
        // - n is a multiple of 8, so the hash output has an exact byte length.
        // - k >= 3 so the encoded solutions have an exact byte length.
        // - k < n, so the collision bit length is at least 1.
        // - n is a multiple of k + 1, so we have an integer collision bit length.
        if (n % 8 == 0) && (k >= 3) && (k < n) && (n % (k + 1) == 0) {
            Ok(Params { n, k })
        } else {
            Err(Error(Kind::InvalidParams))
        }
    }
    fn indices_per_hash_output(&self) -> u32 {
        512 / self.n
    }
    fn hash_output(&self) -> u8 {
        (self.indices_per_hash_output() * self.n / 8) as u8
    }
    fn collision_bit_length(&self) -> usize {
        (self.n / (self.k + 1)) as usize
    }
    fn collision_byte_length(&self) -> usize {
        (self.collision_bit_length() + 7) / 8
    }
    #[cfg(test)]
    fn hash_length(&self) -> usize {
        ((self.k as usize) + 1) * self.collision_byte_length()
    }
}

impl Node {
    fn new(p: &Params, state: &Blake2bState, i: u32) -> Self {
        let hash = generate_hash(state, i / p.indices_per_hash_output());
        let start = ((i % p.indices_per_hash_output()) * p.n / 8) as usize;
        let end = start + (p.n as usize) / 8;
        Node {
            hash: expand_array(&hash.as_bytes()[start..end], p.collision_bit_length(), 0),
            indices: vec![i],
        }
    }

    // Clippy incorrectly interprets the first argument as `self`.
    #[allow(clippy::wrong_self_convention)]
    fn from_children(a: Node, b: Node, trim: usize) -> Self {
        let hash: Vec<_> = a
            .hash
            .iter()
            .zip(b.hash.iter())
            .skip(trim)
            .map(|(a, b)| a ^ b)
            .collect();
        let indices = if a.indices_before(&b) {
            let mut indices = a.indices;
            indices.extend(b.indices.iter());
            indices
        } else {
            let mut indices = b.indices;
            indices.extend(a.indices.iter());
            indices
        };
        Node { hash, indices }
    }

    #[cfg(test)]
    fn from_children_ref(a: &Node, b: &Node, trim: usize) -> Self {
        let hash: Vec<_> = a
            .hash
            .iter()
            .zip(b.hash.iter())
            .skip(trim)
            .map(|(a, b)| a ^ b)
            .collect();
        let mut indices = Vec::with_capacity(a.indices.len() + b.indices.len());
        if a.indices_before(b) {
            indices.extend(a.indices.iter());
            indices.extend(b.indices.iter());
        } else {
            indices.extend(b.indices.iter());
            indices.extend(a.indices.iter());
        }
        Node { hash, indices }
    }

    fn indices_before(&self, other: &Node) -> bool {
        // Indices are serialized in big-endian so that integer
        // comparison is equivalent to array comparison
        self.indices[0] < other.indices[0]
    }

    fn is_zero(&self, len: usize) -> bool {
        self.hash.iter().take(len).all(|v| *v == 0)
    }
}

/// An Equihash solution failed to verify.
#[derive(Debug)]
pub struct Error(Kind);

impl fmt::Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "Invalid solution: {}", self.0)
    }
}

impl std::error::Error for Error {}

#[derive(Debug, PartialEq)]
pub(crate) enum Kind {
    InvalidParams,
    Collision,
    OutOfOrder,
    DuplicateIdxs,
    NonZeroRootHash,
}

impl fmt::Display for Kind {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Kind::InvalidParams => f.write_str("invalid parameters"),
            Kind::Collision => f.write_str("invalid collision length between StepRows"),
            Kind::OutOfOrder => f.write_str("Index tree incorrectly ordered"),
            Kind::DuplicateIdxs => f.write_str("duplicate indices"),
            Kind::NonZeroRootHash => f.write_str("root hash of tree is non-zero"),
        }
    }
}

fn initialise_state(n: u32, k: u32, digest_len: u8) -> Blake2bState {
    let mut personalization: Vec<u8> = Vec::from("ZcashPoW");
    personalization.write_u32::<LittleEndian>(n).unwrap();
    personalization.write_u32::<LittleEndian>(k).unwrap();

    Blake2bParams::new()
        .hash_length(digest_len as usize)
        .personal(&personalization)
        .to_state()
}

fn generate_hash(base_state: &Blake2bState, i: u32) -> Blake2bHash {
    let mut lei = [0u8; 4];
    (&mut lei[..]).write_u32::<LittleEndian>(i).unwrap();

    let mut state = base_state.clone();
    state.update(&lei);
    state.finalize()
}

fn expand_array(vin: &[u8], bit_len: usize, byte_pad: usize) -> Vec<u8> {
    assert!(bit_len >= 8);
    assert!(8 * size_of::<u32>() >= 7 + bit_len);

    let out_width = (bit_len + 7) / 8 + byte_pad;
    let out_len = 8 * out_width * vin.len() / bit_len;

    // Shortcut for parameters where expansion is a no-op
    if out_len == vin.len() {
        return vin.to_vec();
    }

    let mut vout: Vec<u8> = vec![0; out_len];
    let bit_len_mask: u32 = (1 << bit_len) - 1;

    // The acc_bits least-significant bits of acc_value represent a bit sequence
    // in big-endian order.
    let mut acc_bits = 0;
    let mut acc_value: u32 = 0;

    let mut j = 0;
    for b in vin {
        acc_value = (acc_value << 8) | u32::from(*b);
        acc_bits += 8;

        // When we have bit_len or more bits in the accumulator, write the next
        // output element.
        if acc_bits >= bit_len {
            acc_bits -= bit_len;
            for x in byte_pad..out_width {
                vout[j + x] = ((
                    // Big-endian
                    acc_value >> (acc_bits + (8 * (out_width - x - 1)))
                ) & (
                    // Apply bit_len_mask across byte boundaries
                    (bit_len_mask >> (8 * (out_width - x - 1))) & 0xFF
                )) as u8;
            }
            j += out_width;
        }
    }

    vout
}

fn indices_from_minimal(p: Params, minimal: &[u8]) -> Result<Vec<u32>, Error> {
    let c_bit_len = p.collision_bit_length();
    // Division is exact because k >= 3.
    if minimal.len() != ((1 << p.k) * (c_bit_len + 1)) / 8 {
        return Err(Error(Kind::InvalidParams));
    }

    assert!(((c_bit_len + 1) + 7) / 8 <= size_of::<u32>());
    let len_indices = 8 * size_of::<u32>() * minimal.len() / (c_bit_len + 1);
    let byte_pad = size_of::<u32>() - ((c_bit_len + 1) + 7) / 8;

    let mut csr = Cursor::new(expand_array(minimal, c_bit_len + 1, byte_pad));
    let mut ret = Vec::with_capacity(len_indices);

    // Big-endian so that lexicographic array comparison is equivalent to integer
    // comparison
    while let Ok(i) = csr.read_u32::<BigEndian>() {
        ret.push(i);
    }

    Ok(ret)
}

fn has_collision(a: &Node, b: &Node, len: usize) -> bool {
    a.hash
        .iter()
        .zip(b.hash.iter())
        .take(len)
        .all(|(a, b)| a == b)
}

fn distinct_indices(a: &Node, b: &Node) -> bool {
    for i in &(a.indices) {
        for j in &(b.indices) {
            if i == j {
                return false;
            }
        }
    }
    true
}

fn validate_subtrees(p: &Params, a: &Node, b: &Node) -> Result<(), Kind> {
    if !has_collision(a, b, p.collision_byte_length()) {
        Err(Kind::Collision)
    } else if b.indices_before(a) {
        Err(Kind::OutOfOrder)
    } else if !distinct_indices(a, b) {
        Err(Kind::DuplicateIdxs)
    } else {
        Ok(())
    }
}

#[cfg(test)]
fn is_valid_solution_iterative(
    p: Params,
    input: &[u8],
    nonce: &[u8],
    indices: &[u32],
) -> Result<(), Error> {
    let mut state = initialise_state(p.n, p.k, p.hash_output());
    state.update(input);
    state.update(nonce);

    let mut rows = Vec::new();
    for i in indices {
        rows.push(Node::new(&p, &state, *i));
    }

    let mut hash_len = p.hash_length();
    while rows.len() > 1 {
        let mut cur_rows = Vec::new();
        for pair in rows.chunks(2) {
            let a = &pair[0];
            let b = &pair[1];
            validate_subtrees(&p, a, b).map_err(Error)?;
            cur_rows.push(Node::from_children_ref(a, b, p.collision_byte_length()));
        }
        rows = cur_rows;
        hash_len -= p.collision_byte_length();
    }

    assert!(rows.len() == 1);

    if rows[0].is_zero(hash_len) {
        Ok(())
    } else {
        Err(Error(Kind::NonZeroRootHash))
    }
}

fn tree_validator(p: &Params, state: &Blake2bState, indices: &[u32]) -> Result<Node, Error> {
    if indices.len() > 1 {
        let end = indices.len();
        let mid = end / 2;
        let a = tree_validator(p, state, &indices[0..mid])?;
        let b = tree_validator(p, state, &indices[mid..end])?;
        validate_subtrees(p, &a, &b).map_err(Error)?;
        Ok(Node::from_children(a, b, p.collision_byte_length()))
    } else {
        Ok(Node::new(p, state, indices[0]))
    }
}

fn is_valid_solution_recursive(
    p: Params,
    input: &[u8],
    nonce: &[u8],
    indices: &[u32],
) -> Result<(), Error> {
    let mut state = initialise_state(p.n, p.k, p.hash_output());
    state.update(input);
    state.update(nonce);

    let root = tree_validator(&p, &state, indices)?;

    // Hashes were trimmed, so only need to check remaining length
    if root.is_zero(p.collision_byte_length()) {
        Ok(())
    } else {
        Err(Error(Kind::NonZeroRootHash))
    }
}

/// Checks whether `soln` is a valid solution for `(input, nonce)` with the
/// parameters `(n, k)`.
pub fn is_valid_solution(
    n: u32,
    k: u32,
    input: &[u8],
    nonce: &[u8],
    soln: &[u8],
) -> Result<(), Error> {
    let p = Params::new(n, k)?;
    let indices = indices_from_minimal(p, soln)?;

    // Recursive validation is faster
    is_valid_solution_recursive(p, input, nonce, &indices)
}

#[cfg(test)]
mod tests {
    use super::{
        expand_array, indices_from_minimal, is_valid_solution, is_valid_solution_iterative,
        is_valid_solution_recursive, Params,
    };
    use crate::test_vectors::{INVALID_TEST_VECTORS, VALID_TEST_VECTORS};

    #[test]
    fn array_expansion() {
        let check_array = |(bit_len, byte_pad), compact, expanded| {
            assert_eq!(expand_array(compact, bit_len, byte_pad), expanded);
        };

        // 8 11-bit chunks, all-ones
        check_array(
            (11, 0),
            &[
                0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
            ],
            &[
                0x07, 0xff, 0x07, 0xff, 0x07, 0xff, 0x07, 0xff, 0x07, 0xff, 0x07, 0xff, 0x07, 0xff,
                0x07, 0xff,
            ][..],
        );
        // 8 21-bit chunks, alternating 1s and 0s
        check_array(
            (21, 0),
            &[
                0xaa, 0xaa, 0xad, 0x55, 0x55, 0x6a, 0xaa, 0xab, 0x55, 0x55, 0x5a, 0xaa, 0xaa, 0xd5,
                0x55, 0x56, 0xaa, 0xaa, 0xb5, 0x55, 0x55,
            ],
            &[
                0x15, 0x55, 0x55, 0x15, 0x55, 0x55, 0x15, 0x55, 0x55, 0x15, 0x55, 0x55, 0x15, 0x55,
                0x55, 0x15, 0x55, 0x55, 0x15, 0x55, 0x55, 0x15, 0x55, 0x55,
            ][..],
        );
        // 8 21-bit chunks, based on example in the spec
        check_array(
            (21, 0),
            &[
                0x00, 0x02, 0x20, 0x00, 0x0a, 0x7f, 0xff, 0xfe, 0x00, 0x12, 0x30, 0x22, 0xb3, 0x82,
                0x26, 0xac, 0x19, 0xbd, 0xf2, 0x34, 0x56,
            ],
            &[
                0x00, 0x00, 0x44, 0x00, 0x00, 0x29, 0x1f, 0xff, 0xff, 0x00, 0x01, 0x23, 0x00, 0x45,
                0x67, 0x00, 0x89, 0xab, 0x00, 0xcd, 0xef, 0x12, 0x34, 0x56,
            ][..],
        );
        // 16 14-bit chunks, alternating 11s and 00s
        check_array(
            (14, 0),
            &[
                0xcc, 0xcf, 0x33, 0x3c, 0xcc, 0xf3, 0x33, 0xcc, 0xcf, 0x33, 0x3c, 0xcc, 0xf3, 0x33,
                0xcc, 0xcf, 0x33, 0x3c, 0xcc, 0xf3, 0x33, 0xcc, 0xcf, 0x33, 0x3c, 0xcc, 0xf3, 0x33,
            ],
            &[
                0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33,
                0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33,
                0x33, 0x33, 0x33, 0x33,
            ][..],
        );
        // 8 11-bit chunks, all-ones, 2-byte padding
        check_array(
            (11, 2),
            &[
                0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
            ],
            &[
                0x00, 0x00, 0x07, 0xff, 0x00, 0x00, 0x07, 0xff, 0x00, 0x00, 0x07, 0xff, 0x00, 0x00,
                0x07, 0xff, 0x00, 0x00, 0x07, 0xff, 0x00, 0x00, 0x07, 0xff, 0x00, 0x00, 0x07, 0xff,
                0x00, 0x00, 0x07, 0xff,
            ][..],
        );
    }

    #[test]
    fn minimal_solution_repr() {
        let check_repr = |minimal, indices| {
            assert_eq!(
                indices_from_minimal(Params { n: 80, k: 3 }, minimal).unwrap(),
                indices,
            );
        };

        // The solutions here are not intended to be valid.
        check_repr(
            &[
                0x00, 0x00, 0x08, 0x00, 0x00, 0x40, 0x00, 0x02, 0x00, 0x00, 0x10, 0x00, 0x00, 0x80,
                0x00, 0x04, 0x00, 0x00, 0x20, 0x00, 0x01,
            ],
            &[1, 1, 1, 1, 1, 1, 1, 1],
        );
        check_repr(
            &[
                0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
                0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
            ],
            &[
                2097151, 2097151, 2097151, 2097151, 2097151, 2097151, 2097151, 2097151,
            ],
        );
        check_repr(
            &[
                0x0f, 0xff, 0xf8, 0x00, 0x20, 0x03, 0xff, 0xfe, 0x00, 0x08, 0x00, 0xff, 0xff, 0x80,
                0x02, 0x00, 0x3f, 0xff, 0xe0, 0x00, 0x80,
            ],
            &[131071, 128, 131071, 128, 131071, 128, 131071, 128],
        );
        check_repr(
            &[
                0x00, 0x02, 0x20, 0x00, 0x0a, 0x7f, 0xff, 0xfe, 0x00, 0x4d, 0x10, 0x01, 0x4c, 0x80,
                0x0f, 0xfc, 0x00, 0x00, 0x2f, 0xff, 0xff,
            ],
            &[68, 41, 2097151, 1233, 665, 1023, 1, 1048575],
        );
    }

    #[test]
    fn valid_test_vectors() {
        for tv in VALID_TEST_VECTORS {
            for soln in tv.solutions {
                is_valid_solution_iterative(tv.params, tv.input, &tv.nonce, soln).unwrap();
                is_valid_solution_recursive(tv.params, tv.input, &tv.nonce, soln).unwrap();
            }
        }
    }

    #[test]
    fn invalid_test_vectors() {
        for tv in INVALID_TEST_VECTORS {
            assert_eq!(
                is_valid_solution_iterative(tv.params, tv.input, &tv.nonce, tv.solution)
                    .unwrap_err()
                    .0,
                tv.error
            );
            assert_eq!(
                is_valid_solution_recursive(tv.params, tv.input, &tv.nonce, tv.solution)
                    .unwrap_err()
                    .0,
                tv.error
            );
        }
    }

    #[test]
    fn all_bits_matter() {
        // Initialize the state according to one of the valid test vectors.
        let n = 96;
        let k = 5;
        let input = b"Equihash is an asymmetric PoW based on the Generalised Birthday problem.";
        let nonce = [
            1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
            0, 0, 0,
        ];
        let soln = &[
            0x04, 0x6a, 0x8e, 0xd4, 0x51, 0xa2, 0x19, 0x73, 0x32, 0xe7, 0x1f, 0x39, 0xdb, 0x9c,
            0x79, 0xfb, 0xf9, 0x3f, 0xc1, 0x44, 0x3d, 0xa5, 0x8f, 0xb3, 0x8d, 0x05, 0x99, 0x17,
            0x21, 0x16, 0xd5, 0x55, 0xb1, 0xb2, 0x1f, 0x32, 0x70, 0x5c, 0xe9, 0x98, 0xf6, 0x0d,
            0xa8, 0x52, 0xf7, 0x7f, 0x0e, 0x7f, 0x4d, 0x63, 0xfc, 0x2d, 0xd2, 0x30, 0xa3, 0xd9,
            0x99, 0x53, 0xa0, 0x78, 0x7d, 0xfe, 0xfc, 0xab, 0x34, 0x1b, 0xde, 0xc8,
        ];

        // Prove that the solution is valid.
        is_valid_solution(n, k, input, &nonce, soln).unwrap();

        // Changing any single bit of the encoded solution should make it invalid.
        for i in 0..soln.len() * 8 {
            let mut mutated = soln.to_vec();
            mutated[i / 8] ^= 1 << (i % 8);
            is_valid_solution(n, k, input, &nonce, &mutated).unwrap_err();
        }
    }
}