1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
//! `enum_dispatch` provides a set of macros that can be used to easily refactor dynamically
//! dispatched trait accesses to improve their performance by up to 10x.
//!
//! Accessing structures through dynamic dispatch is known to have a high runtime cost. Dynamic
//! dispatch is traditionally used to hide unnecessary type information, improving encapsulation
//! and making it trivial to add new implementations. However, this hiding of information means
//! that each time a structure is dynamically accessed, the program must perform a lookup of the
//! type's information in a virtual table. The extra round-trips to the vtable quickly add up.
//!
//! In Rust, dynamic dispatch is done using traits. Rust 2018 adds the `impl` and `dyn` keywords to
//! make it easier to keep track of instances of dynamic dispatch, but it's not always easy to
//! avoid it entirely.
//!
//! # How it works
//!
//! Observe the following example of code describing a user interface with knobs. Each knob can
//! hold a value between 0.0 and 1.0. Some knobs provide a *linear* range, whereas other knobs
//! provide a *logarithmic* range.
//!
//! ```
//! trait KnobControl {
//!     fn set_position(&mut self, value: f64);
//!     fn get_value(&self) -> f64;
//! }
//!
//! struct LinearKnob {
//!     position: f64,
//! }
//!
//! struct LogarithmicKnob {
//!     position: f64,
//! }
//!
//! impl KnobControl for LinearKnob {
//!     fn set_position(&mut self, value: f64) {
//!         self.position = value;
//!     }
//!
//!     fn get_value(&self) -> f64 {
//!         self.position
//!     }
//! }
//!
//! impl KnobControl for LogarithmicKnob {
//!     fn set_position(&mut self, value: f64) {
//!         self.position = value;
//!     }
//!
//!     fn get_value(&self) -> f64 {
//!         (self.position + 1.).log2()
//!     }
//! }
//!
//! fn main() {
//!     let v: Vec<Box<dyn KnobControl>> = vec![
//!         //set the knobs
//!     ];
//!
//!     //use the knobs
//! }
//! ```
//!
//! There are other ways to keep an arbitrarily ordered list of different knob types, but none of
//! them are quite as simple or easy to maintain. Unfortunately, this implementation uses both heap
//! allocated `Box`es and dynamic dispatch, which will have performance implications.
//!
//! One alternative is to use introduce a new enum type that can hold either a `LinearKnob` or a
//! `LogarithmicKnob` as a variant, and also implements `KnobControl` by matching on itself and
//! delegating calls to its variants. This would look like the following:
//!
//! ```
//! # trait KnobControl {
//! #     fn set_position(&mut self, value: f64);
//! #     fn get_value(&self) -> f64;
//! # }
//! #
//! # struct LinearKnob {
//! #     position: f64,
//! # }
//! #
//! # struct LogarithmicKnob {
//! #     position: f64,
//! # }
//! #
//! # impl KnobControl for LinearKnob {
//! #     fn set_position(&mut self, value: f64) {
//! #         self.position = value;
//! #     }
//! #
//! #     fn get_value(&self) -> f64 {
//! #         self.position
//! #     }
//! # }
//! #
//! # impl KnobControl for LogarithmicKnob {
//! #     fn set_position(&mut self, value: f64) {
//! #         self.position = value;
//! #     }
//! #
//! #     fn get_value(&self) -> f64 {
//! #         (self.position + 1.).log2()
//! #     }
//! # }
//! #
//! enum Knob {
//!     Linear(LinearKnob),
//!     Logarithmic(LogarithmicKnob),
//! }
//!
//! impl KnobControl for Knob {
//!     fn set_position(&mut self, value: f64) {
//!         match self {
//!             Knob::Linear(inner_knob) => inner_knob.set_position(value),
//!             Knob::Logarithmic(inner_knob) => inner_knob.set_position(value),
//!         }
//!     }
//!
//!     fn get_value(&self) -> f64 {
//!         match self {
//!             Knob::Linear(inner_knob) => inner_knob.get_value(),
//!             Knob::Logarithmic(inner_knob) => inner_knob.get_value(),
//!         }
//!     }
//! }
//! ```
//!
//! Performance with this implementation is significantly improved, since all the information the
//! program could possibly need to know about each knob can be deduced at compile time. Besides
//! avoiding heap allocations and vtable lookups, this allows the compiler to squeeze out even more
//! optimization through function inlining.
//!
//! However, it's easy to see that the cost of maintaining the source code for this extra structure
//! is quite high. What happens when we add more knob types? What happens when we add more trait
//! methods? Even worse, what happens when we do both!
//!
//! The resulting code is very repetitive, but that makes it a great target for automatic
//! generation. The `enum_dispatch` macro can do the automatic generation for you. Examine the code
//! to generate the same implementation when using `enum_dispatch`.
//!
//! ```
//! # use enum_dispatch::enum_dispatch;
//! #
//! #[enum_dispatch]
//! trait KnobControl {
//!     //...
//! #     fn set_position(&mut self, value: f64);
//! #     fn get_value(&self) -> f64;
//! }
//! #
//! # struct LinearKnob {
//! #     position: f64,
//! # }
//! #
//! # struct LogarithmicKnob {
//! #     position: f64,
//! # }
//! #
//! # impl KnobControl for LinearKnob {
//! #     fn set_position(&mut self, value: f64) {
//! #         self.position = value;
//! #     }
//! #
//! #     fn get_value(&self) -> f64 {
//! #         self.position
//! #     }
//! # }
//! #
//! # impl KnobControl for LogarithmicKnob {
//! #     fn set_position(&mut self, value: f64) {
//! #         self.position = value;
//! #     }
//! #
//! #     fn get_value(&self) -> f64 {
//! #         (self.position + 1.).log2()
//! #     }
//! # }
//!
//! #[enum_dispatch(KnobControl)]
//! enum Knob {
//!     LinearKnob,
//!     LogarithmicKnob,
//! }
//! ```
//!
//! That's it. `enum_dispatch` will also automatically generate implementations of
//! `std::convert::From` for each enum variant, so that new `Knob`s can be created without concern
//! for the names of each enum variant.
//!
//! ```
//! # use enum_dispatch::enum_dispatch;
//! #
//! # #[enum_dispatch]
//! # trait KnobControl {
//! #     fn set_position(&mut self, value: f64);
//! #     fn get_value(&self) -> f64;
//! # }
//! #
//! # struct LinearKnob {
//! #     position: f64,
//! # }
//! #
//! # struct LogarithmicKnob {
//! #     position: f64,
//! # }
//! #
//! # impl KnobControl for LinearKnob {
//! #     fn set_position(&mut self, value: f64) {
//! #         self.position = value;
//! #     }
//! #
//! #     fn get_value(&self) -> f64 {
//! #         self.position
//! #     }
//! # }
//! #
//! # impl KnobControl for LogarithmicKnob {
//! #     fn set_position(&mut self, value: f64) {
//! #         self.position = value;
//! #     }
//! #
//! #     fn get_value(&self) -> f64 {
//! #         (self.position + 1.).log2()
//! #     }
//! # }
//! #
//! # #[enum_dispatch(KnobControl)]
//! # enum Knob {
//! #     LinearKnob,
//! #     LogarithmicKnob,
//! # }
//! #
//! # fn some_existing_knobs() -> (LinearKnob, LogarithmicKnob) {
//! #     (LinearKnob { position: 0.5 }, LogarithmicKnob { position: 0.5 })
//! # }
//! #
//! let (a_linear_knob, a_logarithmic_knob) = some_existing_knobs();
//!
//! let knob = Knob::from(a_linear_knob);
//! let knob = Knob::from(a_logarithmic_knob);
//! ```
//!
//! # Performance
//!
//! The `benches` directory contains three benchmarks of different natures, each comparing four
//! different methods of accessing a traited struct of an arbitrary type. The four methods are as
//! follows:
//!
//! | test name    | explanation                                                                             |
//! |--------------|-----------------------------------------------------------------------------------------|
//! | boxdyn       | The easiest way to access a struct, using a heap allocation and dynamic dispatch.       |
//! | refdyn       | Accesses the struct by reference, but still using dynamic dispatch. No heap allocation. |
//! | customderive | Uses a similar macro approach from the external [`enum_derive`](https://github.com/DanielKeep/rust-custom-derive) crate, which implements a method that returns an inner type as a dynamic trait object. |
//! | enumdispatch | Implemented using this crate.                                                           |
//!
//! ## The benchmarks
//!
//! The following benchmark results were measured on a Ryzen 7 2700x CPU.
//!
//! ### compiler_optimized
//!
//! The first set of benchmarks creates trait objects and measures the speed of accessing a method
//! on them.
//!
//! ```text
//! test benches::boxdyn_compiler_optimized       ... bench:   2,135,418 ns/iter (+/- 12,575)
//! test benches::customderive_compiler_optimized ... bench:   2,611,860 ns/iter (+/- 18,644)
//! test benches::enumdispatch_compiler_optimized ... bench:           0 ns/iter (+/- 0)
//! test benches::refdyn_compiler_optimized       ... bench:   2,132,591 ns/iter (+/- 22,114)
//! ```
//!
//! It's easy to see that `enum_dispatch` is the clear winner here!
//!
//! Ok, fine. This wasn't a fair test. The compiler is able to "look through" the trait method call
//! in the enum_dispatch case, notices that the result is unused, and removes it as an
//! optimization. However, this still highlights an important property of `enum_dispatch`ed types:
//! the compiler is able to infer much better optimizations when possible.
//!
//! ### blackbox
//!
//! The next set of benchmarks uses the `test::black_box` method to hide the fact that the result
//! of the method is unused.
//!
//! ```text
//! test benches::boxdyn_blackbox       ... bench:   2,131,736 ns/iter (+/- 24,937)
//! test benches::customderive_blackbox ... bench:   2,611,721 ns/iter (+/- 23,502)
//! test benches::enumdispatch_blackbox ... bench:     471,740 ns/iter (+/- 1,439)
//! test benches::refdyn_blackbox       ... bench:   2,131,978 ns/iter (+/- 21,547)
//! ```
//!
//! The competitors faced virtually no impact, whereas `enum_dispatch` takes the full force of the
//! `black_box` call. This test shows the power that avoiding dynamic dispatch gives to the
//! compiler in the context of the previous test, but also demonstrates how much faster
//! `enum_dispatch` is in real code: almost 5 times faster than the closest alternative.
//!
//! ### homogenous_vec
//!
//! The final set of benchmarks puts 1024 traited structs of arbitrary types at random into a `Vec`
//! and measures the time it takes to successively iterate over the entire `Vec`, calling
//! `black_box`ed methods on each element.
//!
//! ```text
//! test benches::boxdyn_homogeneous_vec       ... bench:   5,900,191 ns/iter (+/- 95,169)
//! test benches::customderive_homogeneous_vec ... bench:   4,831,808 ns/iter (+/- 140,437)
//! test benches::enumdispatch_homogeneous_vec ... bench:     479,630 ns/iter (+/- 3,531)
//! test benches::refdyn_homogeneous_vec       ... bench:   5,658,461 ns/iter (+/- 137,128)
//! ```
//!
//! This might be one of the most likely use cases for traited structs of arbitrary types, and it's
//! where `enum_dispatch` really shines. Since a `Vec` of `enum_dispatch` objects is actually a
//! `Vec` of enums rather than addresses, accessing an element takes half the indirection of the
//! other techniques. Add that to the lack of vtable accesses, and we have a result that is 10
//! times faster than the closest alternative, and almost 12 times faster than the best technique
//! from the standard library.

#![doc(
    html_logo_url = "https://gitlab.com/antonok/enum_dispatch/raw/master/enum_dispatch.svg",
    html_favicon_url = "https://gitlab.com/antonok/enum_dispatch/raw/master/enum_dispatch.svg"
)]

extern crate proc_macro;

use proc_macro::TokenStream;
use quote::{ToTokens, TokenStreamExt};

/// Used for converting a macro input into an ItemTrait or an EnumDispatchItem.
mod attributed_parser;
/// Provides local storage for enum and trait definitions so that they can be accessed later.
mod cache;
/// Provides a custom syntax specification for the arguments to an `#[enum_dispatch(...)]` attribute.
mod enum_dispatch_arg_list;
/// Provides a custom syntax specification for enum dispatch syntax blocks.
mod enum_dispatch_item;
/// Provides a custom syntax specification for the variants of enum dispatch syntax blocks.
mod enum_dispatch_variant;
/// Provides utilities for building enum dispatch implementations.
mod expansion;
/// Convenience trait for token parsing.
mod filter_attrs;
/// Convenience methods for constructing `syn` types.
mod syn_utils;

use crate::expansion::add_enum_impls;

/// Annotating a trait or enum definition with an `#[enum_dispatch]` attribute will register it
/// with the enum_dispatch library, allowing it to be used to generate impl blocks elsewhere.
///
/// Annotating a trait or enum definition with an `#[enum_dispatch(BlockName)]` attribute will
/// generate an enum dispatch implementation for the specified trait/enum pair, as well as adding
/// an impl of std::convert::From for each variant. When annotating a trait, BlockName should be the
/// name of a registered enum. When annotating an enum, BlockName should be the name of a registered
/// trait.
///
/// An annotated enum should have variants that are simply the names of types imported to the
/// current scope. To force individual variants to use a custom name when expanded, each variant
/// can also take the form of a normal tuple-style enum variant with a single field.
#[proc_macro_attribute]
pub fn enum_dispatch(attr: TokenStream, item: TokenStream) -> TokenStream {
    let new_block = attributed_parser::parse_attributed(item.clone()).unwrap();
    let expanded = match &new_block {
        attributed_parser::ParsedItem::Trait(traitdef) => {
            cache::cache_trait(traitdef.to_owned());
            item
        }
        attributed_parser::ParsedItem::EnumDispatch(enumdef) => {
            cache::cache_enum_dispatch(enumdef.clone());
            syn::ItemEnum::from(enumdef.to_owned())
                .into_token_stream()
                .into()
        }
    };
    let mut expanded = proc_macro2::TokenStream::from(expanded);
    // If the attributes are non-empty, the new block should be "linked" to the listed definitions.
    // Those definitions may or may not have been cached yet.
    // If one is not cached yet, the link will be pushed into the cache, and impl generation will
    // be deferred until the missing definition is encountered.
    // For now, we assume it is already cached.
    if !attr.is_empty() {
        syn::parse::<enum_dispatch_arg_list::EnumDispatchArgList>(attr)
            .expect("Could not parse arguments to `#[enum_dispatch(...)]`.")
            .arg_list
            .into_iter()
            .for_each(|p| {
                if p.leading_colon.is_some() || p.segments.len() != 1 {
                    panic!("Paths in `#[enum_dispatch(...)]` are not supported.");
                }
                let syn::PathSegment {
                    ident: attr_name,
                    arguments: attr_generics
                } = p.segments.last().unwrap();
                let attr_generics = match attr_generics.clone() {
                    syn::PathArguments::None => vec![],
                    syn::PathArguments::AngleBracketed(args) => {
                        assert!(args.colon2_token.is_none());
                        args.args.iter().map(|generic_arg| {
                            match generic_arg {
                                syn::GenericArgument::Type(syn::Type::Path(t)) if t.qself.is_none() => Some(t.path.get_ident().expect("Generic binding paths in #[enum_dispatch(...)] are not supported").clone()),
                                syn::GenericArgument::Type(syn::Type::Infer(_)) => None,
                                syn::GenericArgument::Type(_) => panic!("Generics in #[enum_dispatch(...)] must be identifiers"),
                                syn::GenericArgument::Lifetime(_) => panic!("Lifetime generics in #[enum_dispatch(...)] are not supported"),
                                syn::GenericArgument::Binding(_) => panic!("Generic equality constraints in #[enum_dispatch(...)] are not supported"),
                                syn::GenericArgument::Constraint(_) => panic!("Generic trait constraints in #[enum_dispatch(...)] are not supported"),
                                syn::GenericArgument::Const(_) => panic!("Const expression generics in #[enum_dispatch(...)] are not supported"),
                            }
                        }).collect::<Vec<_>>()
                    }
                    syn::PathArguments::Parenthesized(_) => panic!("Expected angle bracketed generic arguments, found parenthesized arguments"),
                };
                match &new_block {
                    attributed_parser::ParsedItem::Trait(traitdef) => {
                        cache::defer_link((attr_name, attr_generics.len()), (&traitdef.ident, traitdef.generics.type_params().count()))
                    }
                    attributed_parser::ParsedItem::EnumDispatch(enumdef) => {
                        cache::defer_link((attr_name, attr_generics.len()), (&enumdef.ident, enumdef.generics.type_params().count()))
                    }
                }
            });
    };
    // It would be much simpler to just always retrieve all definitions from the cache. However,
    // span information is not stored in the cache. Saving the newly retrieved definition prevents
    // *all* of the span information from being lost.
    match new_block {
        attributed_parser::ParsedItem::Trait(traitdef) => {
            let additional_enums =
                cache::fulfilled_by_trait(&traitdef.ident, traitdef.generics.type_params().count());
            for enumdef in additional_enums {
                expanded.append_all(add_enum_impls(enumdef, traitdef.clone()));
            }
        }
        attributed_parser::ParsedItem::EnumDispatch(enumdef) => {
            let additional_traits =
                cache::fulfilled_by_enum(&enumdef.ident, enumdef.generics.type_params().count());
            for traitdef in additional_traits {
                expanded.append_all(add_enum_impls(enumdef.clone(), traitdef));
            }
        }
    }
    expanded.into()
}