1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
//! An enum mapping type.
//!
//! It is implemented using an array type, so using it is as fast as using Rust
//! arrays.
//!
//! # Examples
//!
//! ```
//! #[macro_use]
//! extern crate enum_map;
//! #[macro_use]
//! extern crate enum_map_derive;
//!
//! use enum_map::EnumMap;
//!
//! #[derive(Debug, EnumMap)]
//! enum Example {
//!     A,
//!     B,
//!     C,
//! }
//!
//! fn main() {
//!     let mut map = enum_map! {
//!         Example::A => 1,
//!         Example::B => 2,
//!         Example::C => 3,
//!     };
//!     map[Example::C] = 4;
//!
//!     assert_eq!(map[Example::A], 1);
//!
//!     for (key, &value) in &map {
//!         println!("{:?} has {} as value.", key, value);
//!     }
//! }
//! ```

#![no_std]
#![deny(missing_docs)]

#[cfg(feature = "serde")]
extern crate serde;

#[cfg(feature = "serde")]
use serde::ser::{Serialize, Serializer, SerializeMap};
#[cfg(feature = "serde")]
use serde::de::{self, Deserialize, Deserializer, Error, MapAccess};

#[cfg(feature = "serde")]
use core::fmt;
use core::hash::{Hash, Hasher};
use core::iter::Enumerate;
use core::marker::PhantomData;
use core::ops::{Index, IndexMut};
use core::slice;

mod implementations;

// this is not stable, do not depend on this
#[doc(hidden)]
pub trait Internal<V>: Sized {
    type Array;
    fn slice(&Self::Array) -> &[V];
    fn slice_mut(&mut Self::Array) -> &mut [V];
    fn from_usize(usize) -> Self;
    fn to_usize(self) -> usize;
    fn from_function<F: FnMut(Self) -> V>(F) -> Self::Array;
}

/// An enum mapping.
///
/// This internally uses an array which stores a value for each possible
/// enum value. To work, it requires implementation of internal (private,
/// although public due to macro limitations) trait which allows extracting
/// information about an enum, which can be automatically generated using
/// `#[derive(EnumMap)]` from `enum_map_derive` crate.
///
/// Additionally, `bool` and `u8` automatically derives from `EnumMap`. While
/// `u8` is not technically an enum, it's convenient to consider it like one.
/// In particular, [reverse-complement in benchmark game] could be using `u8`
/// as an enum.
///
/// # Examples
///
/// ```
/// extern crate enum_map;
/// #[macro_use]
/// extern crate enum_map_derive;
///
/// use enum_map::EnumMap;
///
/// #[derive(EnumMap)]
/// enum Example {
///     A,
///     B,
///     C,
/// }
///
/// fn main() {
///     let mut map = EnumMap::new();
///     // new initializes map with default values
///     assert_eq!(map[Example::A], 0);
///     map[Example::A] = 3;
///     assert_eq!(map[Example::A], 3);
/// }
/// ```
///
/// [reverse-complement in benchmark game]:
///     http://benchmarksgame.alioth.debian.org/u64q/program.php?test=revcomp&lang=rust&id=2
#[derive(Debug)]
pub struct EnumMap<K: Internal<V>, V> {
    array: K::Array,
}

impl<K: Internal<V>, V> EnumMap<K, V> {
    /// Returns number of elements in enum map.
    pub fn len(&self) -> usize {
        K::slice(&self.array).len()
    }

    /// Returns whether the enum variant set is empty.
    ///
    /// This isn't particularly useful, as there is no real reason to use
    /// enum map for enums without variants. However, it is provided for
    /// consistency with data structures providing len method (and I will
    /// admit, to avoid clippy warnings).
    ///
    /// # Examples
    ///
    /// ```
    /// extern crate enum_map;
    /// #[macro_use]
    /// extern crate enum_map_derive;
    ///
    /// use enum_map::EnumMap;
    ///
    /// #[derive(EnumMap)]
    /// enum Void {}
    ///
    /// #[derive(EnumMap)]
    /// enum SingleVariant {
    ///     Variant,
    /// }
    ///
    /// fn main() {
    ///     assert_eq!(EnumMap::<Void, ()>::new().is_empty(), true);
    ///     assert_eq!(EnumMap::<SingleVariant, ()>::new().is_empty(), false);
    /// }
    pub fn is_empty(&self) -> bool {
        K::slice(&self.array).is_empty()
    }

    /// Returns an iterator over enum map.
    pub fn iter(&self) -> Iter<K, V> {
        self.into_iter()
    }

    /// Returns a mutable iterator over enum map.
    pub fn iter_mut(&mut self) -> IterMut<K, V> {
        self.into_iter()
    }
}

impl<F: FnMut(K) -> V, K: Internal<V>, V> From<F> for EnumMap<K, V> {
    fn from(f: F) -> Self {
        EnumMap { array: K::from_function(f) }
    }
}

/// Enum map constructor.
///
/// This macro allows to create a new enum map in a type safe way. It takes
/// a list of `,` separated pairs separated by `=>`. Left side is `|`
/// separated list of enum keys, or `_` to match all unmatched enum keys,
/// while right side is a value.
///
/// # Examples
///
/// ```
/// #[macro_use]
/// extern crate enum_map;
/// #[macro_use]
/// extern crate enum_map_derive;
///
/// #[derive(EnumMap)]
/// enum Example {
///     A,
///     B,
///     C,
///     D,
/// }
///
/// fn main() {
///     let enum_map = enum_map! {
///         Example::A | Example::B => 1,
///         Example::C => 2,
///         _ => 3,
///     };
///     assert_eq!(enum_map[Example::A], 1);
///     assert_eq!(enum_map[Example::B], 1);
///     assert_eq!(enum_map[Example::C], 2);
///     assert_eq!(enum_map[Example::D], 3);
/// }
/// ```
#[macro_export]
macro_rules! enum_map {
    {$($t:tt)*} => {
        ::enum_map::EnumMap::from(|k| match k { $($t)* })
    };
}

impl<K: Internal<V>, V: Default> EnumMap<K, V>
    where K::Array: Default
{
    /// Creates an enum map with default values.
    ///
    /// ```
    /// extern crate enum_map;
    /// #[macro_use]
    /// extern crate enum_map_derive;
    ///
    /// use enum_map::EnumMap;
    ///
    /// #[derive(EnumMap)]
    /// enum Example {
    ///     A,
    /// }
    ///
    /// fn main() {
    ///     let enum_map = EnumMap::<_, i32>::new();
    ///     assert_eq!(enum_map[Example::A], 0);
    /// }
    /// ```
    pub fn new() -> Self {
        EnumMap::default()
    }
}

// Implementations provided by derive attribute are too specific, and put requirements on K.
// This is caused by rust-lang/rust#26925.
impl<K: Internal<V>, V> Clone for EnumMap<K, V>
    where K::Array: Clone
{
    fn clone(&self) -> Self {
        EnumMap { array: self.array.clone() }
    }
}

impl<K: Internal<V>, V> Copy for EnumMap<K, V> where K::Array: Copy {}

impl<K: Internal<V>, V> PartialEq for EnumMap<K, V>
    where K::Array: PartialEq
{
    fn eq(&self, other: &Self) -> bool {
        self.array == other.array
    }
}

impl<K: Internal<V>, V> Eq for EnumMap<K, V> where K::Array: Eq {}

impl<K: Internal<V>, V> Hash for EnumMap<K, V>
    where K::Array: Hash
{
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.array.hash(state);
    }
}

impl<K: Internal<V>, V> Default for EnumMap<K, V>
    where K::Array: Default
{
    fn default() -> Self {
        EnumMap { array: K::Array::default() }
    }
}

impl<K: Internal<V>, V> Index<K> for EnumMap<K, V> {
    type Output = V;

    fn index(&self, key: K) -> &V {
        &K::slice(&self.array)[key.to_usize()]
    }
}

impl<K: Internal<V>, V> IndexMut<K> for EnumMap<K, V> {
    fn index_mut(&mut self, key: K) -> &mut V {
        &mut K::slice_mut(&mut self.array)[key.to_usize()]
    }
}

/// Immutable enum map iterator
///
/// This struct is created by `iter` method or `into_iter` on a reference
/// to `EnumMap`.
///
/// # Examples
///
/// ```
/// #[macro_use]
/// extern crate enum_map;
/// #[macro_use]
/// extern crate enum_map_derive;
///
/// #[derive(EnumMap)]
/// enum Example {
///     A,
///     B,
///     C,
/// }
///
/// fn main() {
///     let mut map = enum_map! { Example::A => 3, _ => 0 };
///     assert_eq!(map[Example::A], 3);
///     for (key, &value) in &map {
///         assert_eq!(match key {
///             Example::A => 3,
///             _ => 0,
///         }, value);
///     }
/// }
/// ```
pub struct Iter<'a, K, V: 'a> {
    _phantom: PhantomData<K>,
    iterator: Enumerate<slice::Iter<'a, V>>,
}

impl<'a, K: Internal<V>, V> Iterator for Iter<'a, K, V> {
    type Item = (K, &'a V);
    fn next(&mut self) -> Option<Self::Item> {
        self.iterator
            .next()
            .map(|(index, item)| (K::from_usize(index), item))
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iterator.size_hint()
    }
}

impl<'a, K: Internal<V>, V> DoubleEndedIterator for Iter<'a, K, V> {
    fn next_back(&mut self) -> Option<Self::Item> {
        self.iterator
            .next_back()
            .map(|(index, item)| (K::from_usize(index), item))
    }
}

impl<'a, K: Internal<V>, V> ExactSizeIterator for Iter<'a, K, V> {}

impl<'a, K: Internal<V>, V> IntoIterator for &'a EnumMap<K, V> {
    type Item = (K, &'a V);
    type IntoIter = Iter<'a, K, V>;
    fn into_iter(self) -> Self::IntoIter {
        Iter {
            _phantom: PhantomData,
            iterator: K::slice(&self.array).iter().enumerate(),
        }
    }
}

/// Mutable map iterator
///
/// This struct is created by `iter_mut` method or `into_iter` on a mutable
/// reference to `EnumMap`.
///
/// # Examples
///
/// ```
/// #[macro_use]
/// extern crate enum_map;
/// #[macro_use]
/// extern crate enum_map_derive;
///
/// #[derive(Debug, EnumMap)]
/// enum Example {
///     A,
///     B,
///     C,
/// }
///
/// fn main() {
///     let mut map = enum_map! { Example::A => 3, _ => 0 };
///     for (_, value) in &mut map {
///         *value += 1;
///     }
///     assert_eq!(map, enum_map! { Example::A => 4, _ => 1 });
/// }
/// ```
pub struct IterMut<'a, K, V: 'a> {
    _phantom: PhantomData<K>,
    iterator: Enumerate<slice::IterMut<'a, V>>,
}

impl<'a, K: Internal<V>, V> Iterator for IterMut<'a, K, V> {
    type Item = (K, &'a mut V);
    fn next(&mut self) -> Option<Self::Item> {
        self.iterator
            .next()
            .map(|(index, item)| (K::from_usize(index), item))
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iterator.size_hint()
    }
}

impl<'a, K: Internal<V>, V> DoubleEndedIterator for IterMut<'a, K, V> {
    fn next_back(&mut self) -> Option<Self::Item> {
        self.iterator
            .next_back()
            .map(|(index, item)| (K::from_usize(index), item))
    }
}

impl<'a, K: Internal<V>, V> ExactSizeIterator for IterMut<'a, K, V> {}

impl<'a, K: Internal<V>, V> IntoIterator for &'a mut EnumMap<K, V> {
    type Item = (K, &'a mut V);
    type IntoIter = IterMut<'a, K, V>;
    fn into_iter(self) -> Self::IntoIter {
        IterMut {
            _phantom: PhantomData,
            iterator: K::slice_mut(&mut self.array).iter_mut().enumerate(),
        }
    }
}

#[cfg(feature = "serde")]
impl<K: Internal<V> + Serialize, V: Serialize> Serialize for EnumMap<K, V> {
    fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
        let mut map = serializer.serialize_map(Some(self.len()))?;
        for (key, value) in self {
            map.serialize_entry(&key, value)?;
        }
        map.end()
    }
}

#[cfg(feature = "serde")]
impl<'de, K, V> Deserialize<'de> for EnumMap<K, V>
    where K: Internal<V> + Internal<Option<V>> + Deserialize<'de>,
          V: Deserialize<'de>
{
    fn deserialize<D: Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error> {
        deserializer.deserialize_map(Visitor(PhantomData))
    }
}

#[cfg(feature = "serde")]
struct Visitor<K: Internal<V>, V>(PhantomData<EnumMap<K, V>>);

#[cfg(feature = "serde")]
impl<'de, K, V> de::Visitor<'de> for Visitor<K, V>
    where K: Internal<V> + Internal<Option<V>> + Deserialize<'de>,
          V: Deserialize<'de>
{
    type Value = EnumMap<K, V>;

    fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
        write!(formatter, "map")
    }

    fn visit_map<M: MapAccess<'de>>(self, mut access: M) -> Result<Self::Value, M::Error> {
        let mut entries = EnumMap::from(|_| None);
        while let Some((key, value)) = access.next_entry()? {
            entries[key] = Some(value);
        }
        for (_, value) in &entries {
            if value.is_none() {
                return Err(M::Error::custom("key not specified"));
            }
        }
        Ok(EnumMap::from(|key| entries[key].take().unwrap()))
    }
}